Effects of High but Non-Toxic Dietary Intake of Selenium and Copper on Indices of the Antioxidant Defence System and on Accumulation of Trace Elements in Chicks

Open access

Abstract

Lohman Brown chickens with age from the 1stto 35thday received the food with high doses ofselenium (Se1 mg/kg), copper (Cu100 mg/kg), or both elements (Se1 + Cu100). Live weight increaseof all three experimental chicken groups was by 9.3, 12.9 and 8.1%, respectively, in comparisonwith the control. The concentration of selenium in the blood of the Se1 group chickenswas by 45.5, in liver by 63.4 and in kidney by 19.7% higher that in organs of control group chickens.Selenium accumulation in organs of Se1 group chickens was highly correlated with increaseof glutathionperoxidase activity in blood (r = 0.90) and in liver (r = 0.85) and with decrease of glutathioneconcentration in liver. In Cu100 group chickens, copper concentration increased by 11.7in blood, in liver by 23.7, and in kidney by 19.9%. Together with more intensive excretion of glutathionefrom hepatocytes, copper concentration in bile increased by 17.7% compared to that incontrol group chickens. Also wing feathers participated in the regulation of copper homeostaticbalance, as copper concentration in feathers increased by 66.7%. The concentration of malondialdehidein liver of chickens from all groups was similar (43.5-45.2 μmol·g-1wet wt.), indicatingthat overload of selenium and copper did not cause profuse production of oxyradicals in the organism.Increased accumulation of selenium and copper in chickens influenced biochemical regulationof iron, zinc and cadmium deposition in liver, kidney, tibia and feather, changing therelations between Se and Fe, Se and Cd, Cu and Fe, Cu and Zn, and Cu and Cd concentrations.The analysis indicates increased tolerance of chicken to loads of selenium (1 mg/kg) and copper(100 mg/kg) doses

Aaseth, J., Ringstad, J. (1991). Synergism and antagonism of different ele­ments in relation to selenium and cadmium. In: Human and Animal Health in Relation to Circulation Processes of Selenium and Cadmium (pp. 29-46). Lag, J. (ed.). Oslo: Det Norske Videnskaps-Akademi.

Aburto, E.M., Cribb, A.E., Fuentealba, I.C. (2001). Effect of chronic expo­sure to excess dietary copper and dietary selenium supplementation on liver specimens from rats. Amer. J. Vet. Res., 62(9), 1423-1427.

Anonims (2003). Dejejvistu labturlbas praslbas [Guidelines for laying hen care]. MinistrukabinetanoteikumiNr. 102. Riga, prot. Nr. 13 (inLatvian).

Anonymous (1980). Recommended Dietary Allowances, Food and Nutrition Board. National Academy of Sciences, National Research Council (NRC). Washington, D.C, pp. 162-164.

Anonymous (1997). AOAC Official method 996.16. Selenium in Feeds and Premixes. Fluorometric method.

Anonymous (1999). AOAC Official method 999.11. Determination of Lead, Cadmium, Copper, Iron and Zinc in Foods. Atomic Absorption Spectro- photometry after Dry Ashing.

Anonymous (2002). Food additives permitted in feeds and drinking water of animals. Selenium. Fed. Reg., 67(137), 46850-46851.

Anonymous (2003). Recommended levels of minerals in poultry diets. EU Commision. 74/63/EEC.

Anonymous (2004). EU Council Directive, 70/524/EEC.

Anonymous (2005). National Research Council (U.S.). Committee on Min­erals and Toxic Substances in Diets and Water for Animals. Copper. In: Mineral Tolerance of Animals. Second revised edition. (pp. 134-153). Washington, D.C.: The National Academies Press.

Apsite, M., Pitrans, B., Atlavin A. (1994). Absorption and assimilation of 75Se-selenate and 75Se-selenite in chicks. In: Defizite und Vberschusse an Mengen- und Spurenelementen in der Ernahrung, 14. Arbeitstagung Mengen- und Spurenelemente, 25. und 26. November 1994 (p. 188). Friedrich-Schiller-Universitat Jena.

Aydemir, T., Ozturk, R., Bozkaya, L., Tarhan L. (2000). Effects of antioxi­dant vitamins A, C, E and trace elements Cu, Se on CuZn-SOD, GSH-Px, CAT and LPO levels in chicken erythrocytes. Cell Biochem. Funct., 18(2), 109-115.

Badiello, R., Feroci, G., Fini, A. (1996). Interaction between trace elements: Selenium and cadmium ions. J. Trace Elem. Med. Biol., 10(3), 156-162.

Behne, D., Pfiefer, H., Rothlein, D., Kyriakopoulos A. (2000). Cellular and subcellular distribution of selenium and selenoproteins. In: Trace Elements in Man and Animals 10: Proceedings of the Tenth International Sympo­sium on Trace Elements in Man and Animals (pp. 29-33). New York: Ple­num Press, 2000.

Berzina, N., Apsite, M., Smirnova, G., Basova, N. (2004). Effect of dietary copper intakes on chick health. In: Macro and Trace Elements, 22. Work­shop, September 24 and 25 2004 (pp. 69-74). Friedrich Schiller University Jena.

Bettger, W. (1993). Zinc and selenium, site-specific versus general antioxidation. Can. J. Physiol. Pharmacol., 71, 721-724.

Beutler, E., Duron, O., Kelly, B. (1963). Improved method for the determina­tion of blood glutathione. J. Lab. Clin. Med., 5, 882-888.

Bozkaya, L.A., Ozturek-Urek, R., Aydemir, T., Tarhan, L. (2001). Effects of Se, Cu and Se+vitamin E deficiency on the activities of CuZnSOD, GSH-Px, CAT and LPO levels in chicken erythrocytes. Cell Biochem. Funct., 19(3), 153-157.

Close, B., Banister, K. (1998). Recommendations for euthanasia of experi­mental animals. Baltic J. Lab. Anim. Sci., part 2, 8(1), 29-50.

Davis, R.H., Fear, J., Winton, A.C. (1996). Interactions between selenium, copper and sodium nitroprusside, a source of cyanide in growing chicks and laying hens. Brit. Poult. Sci, 37(1), 87-94.

Dougherty, J., Hoekstra, W. (1982). Effects of vitamin E and selenium on copper-induced lipid peroxidation in vivo and acute copper toxicity. Proc. Soc. Exp. Biol. Med., 169, 201-208.

Eichhorn, F., Zelmanovski, S., Lew, E., Kutenberg, A., Fancas, B. (1961). Improvement of the uric acid determination by the carbonate method for serum and urine. J. Clin. Pathology, 14, 450-452.

Engelking, L.R. (2004). Vitamins and trace elements. In: Textbook of Veteri­nary Physiological Chemistry (pp. 280-284). Cann, C. (ed.). US: Teton NewMedia.

Finkel, T., Holbrook, N. (2000). Oxidants, oxidative stress and the biology of aging. Nature, 408(9), 239-247.

Gladyshev, V.N., Hatfield, D.L. (2010). Selenocysteine biosynthesis, selenoproteins, and selenoproteomes. Nucl. Acids Mol. Biol., 24(1), 3-27.

Gregus, Z., Stein, A., Varga, F., Klaassen, C. (1992). Effect of lipoic acid on biliary excretion of glutathione and metals. Toxicol. Appl. Pharmacol., 114(1), 88-96.

Harris, E.D., Blount, J.E., Leach, R.M. (1980). Localization of lysyloxidase in hen oviduct: Implications in egg shell membrane formation and compo­sition. Science, 208, 55-56.

Kadiiska, M.B., Hanna, P.M., Jordan, S.J., Mason, R.P. (1993). Electron spin resonance evidence for free radical generation in copper-treated vitamin E- and selenium-deficient rats. Mol. Pharmacol., 44(1), 222-227.

Koller, L.D., Exon, J.H. (1986). The two faces of selenium-deficiency and toxicity - are similar in animals and man. Can. J. Vet. Res., 50,297-306.

Liepa, I. (1974). Korelacijas analize [Analysis of correlation]. Gram.: Biometrija. Riga: Zinatne, 177.-216. lpp. (in Latvian).

Mielcarz, G., Linke, K., Barinow-Wojewodzki, A., Morawska-Staszak, K. (2006). Effect of creatine supplementation on selenium, copper and zinc status in patients with chronic liver disease. In: Macro and Trace Elements, 23. Workshop, September 27, 2006 (pp. 632-634). Friedrich Schiller Uni­versity Jena.

Payne, R.L., Southern, L.L. (2005). Changes in glutathione peroxidase and tissue selenium concentrations of broilers after consuming a diet adequate in selenium. Poult. Sci., 84(8), 1268-1276.

Pinto, R., Bartley, W. (1969). The effect of age and sex on glutathione reductase and glutathione peroxidase activities and on aerobic glutathione oxidation in rat liver homogenates. Biochem. J., 112(1), 109-115.

Sevcikova, S., Skrivan, M., Dlouha, G., Koucky, M. (2006). The effect of se­lenium source on the performance and meat quality of broiler chickens. Czech J. Anim. Sci., 10, 449-457.

Skrivan, M., Skrivanova, V., Marounek, M., Tumova, E., Wolf, J. (2001). Influence of dietary fat source and copper supplementation on broiler perfor­mance, fatty acid profile of meat and depot fat, and on cholesterol content in meat. Brit. Poult. Sci, 41(5), 608-614.

Stef, D., Drinceanu, D., Stef, L., Julean, C., Druga, M., Marcu, A., Biron, R. (2006). The effect of different levels of copper in broiler chicken feeding. In: Macro and Trace Elements, 23. Workshop, September 27, 2006 (pp. 647-651). Friedrich Schiller University Jena..

Stohs, A.J., Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Rad. Biol. Med., 18, 321-336.

Surai, P.F., Noble, R.C., Speake, B.K. (1996). Tissue-specific differences in antioxidant distribution and susceptibility to lipid peroxidation during de­velopment of the chick embryo. Biochem. Biophys. Acta, 1304, 1-10.

Surai, P.F. (2006). Antioxidant systems in animal body. In: Selenium in Nutrition and Health (pp. 1-44). Nottingham University Press.

Tatum, L., Shankar, P., Boylan, L. M., Spallholz, J. E. (2000). Effect of dietary copper on selenium toxicity in Fischer 344 rats. Biol. Trace Elem. Res., 77(3), 241-249.

Twomey, P.J., Viljoen, A., House, I.M., Reynolds, T.M., Wierzbicki, A.S. (2005). Relationship between serum copper, ceruloplasmin, and non- ceruloplasmin-bound copper in routine clinical practice. Clin. Chem., 51(8), 1558-1559.

Wijmenga, C., Klomp, L.W. (2004). Molecular regulation of copper excre­tion in the liver. Proc. Nutr. Soc., 63(1), 31-39.

Акулов A.B., Минина Л.А., Андреев М.И., Томских Ю.И. (1972). Экспериментальный селеновый токсикоз у кур. [Experimental selenium toxicosis in hens]. Сельскохозяйственная биология, 7(3), 430-436 (in Russian).

Атлавин А.Б., Апсите М.Р. (1982). Влияние меди и кобальта на всасывание 75Se у цыплят [The influence of copper and cobalt on ab­sorption in chicken]. В кн.: Биохимия всасывания питатель­ных веществ у животных (с. 124-130). Рига: Зинатне (in Russian).

Атлавин А.Б., Апсите М.Р., Питран Б.В. (1990). Ассимиляция селена в организме животных [Assimilation of selenium in animal organism]. В кн.: Усвоение органических и неорганических соединений в орга­низме животных (с. 30-65). Рига: Зинатне (in Russian).

Горобец А.И. (2005). Использование меди в кормлении птицы [The use of copper in bird feeding]. Птахгвництво. Мгжвгд. темат. наук. 3Óip. Матергали VI Укратсъког конференци по nтахiвництву з мжнародною участю (19-23 вересня 2004, Алушта). УААН. Харыв-2005, 57, с. 162-174 (in Russian).

Горобец А.И. (2007). Роль и перспективы использования некоторых соединений микроэлементов в кормлении птицы [The role and prospects of using some trace element compounds in bird feeding]. Птах1в- ництво. М1жв1д. темат. наук. зб1р. Матер1али ΙΠ М1жнародно1 науково-практично1 конференци по птах1вництву (17-21 вересня 2007, Судак). УААН. Харыв, 60, с. 40-49 (in Russian).

Journal Information

CiteScore 2017: 0.22

SCImago Journal Rank (SJR) 2017: 0.127
Source Normalized Impact per Paper (SNIP) 2017: 0.211

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 137 105 6
PDF Downloads 59 51 4