Environmental quality assessment of the drainage basin of Lake Engure using Scots pine as a bioindicator

Open access

Environmental quality assessment of the drainage basin of Lake Engure using Scots pine as a bioindicator

Environmental quality assessment of the Lake Engure drainage area, which is the LT(S)ER region of the Latvian National Long-term Ecological Research network (Latvia LTER), was conducted using three bioindication methods based on Scots pine Pinus sylvestris L.: unspecific bioindication by pine needle tip necrosis, ground level ozone assessment by pine needle chlorotic mottling, and chemical analysis of pine bark. Samples were collected from 40 sites of the region in November 2010. Extent of needle tip necroses did not exceed class 4 (maximum possible value 6). The highest value of index of needle damage by ozone was Idam = 1.62 (maximum possible value 6). Multiple regression analysis of variables describing bark chemistry and needle damage in relation to distance from the sea, nearest roads and villages was performed. Pine bark acidity pH(KCl) and concentration of Mg and Fe decreased significantly (βpH(KCl) = -0.672, P < 0.001; βMg = -0.676, P < 0.001; βFe = -0.514, P < 0.001) with distance of sample site from gravel roads. Electric conductivity (EC) of pine bark and the extent of ozone damage of the first year needles Idam significantly decreased with distance from the sea (βozone = -0.507, P < 0.01; βEC = -0.453, P < 0.01). PCA of the pine bark chemistry data showed dust pollution from gravel roads to be the main factor responsible for the 33% variation of data. No statistically significant correlations were found between different bioindicator characteristics, except between first and second year ozone damage (ρ = 0.589, P = 0.01).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anonymous (2001). Submanual on Assessement of Ozone Injury on Intensive Monitoring Plots Annex. UN Economic Commission For Europe Convention on Long-Range Transboundary Air Pollution. 21 pp.

  • Anonymous (2005). Ecosystems and Human Well-Being: Synthesis. Millennium Ecosystem Assessment (MEA) Washington Island Press. 155 pp.

  • Anonymous (2005). Vides monitoringa programma [Environmental monitoring programme]. Available at: http://www.lvgma.gov.lv/vmp2005/

  • Anonymous (2011a). ILTER. Available at: http://www.ilternet.edu

  • Anonymous (2011b). National LTER Network of Latvia. Available at: http://www.lubi.edu.lv/index2.php?lang=2&sid=115

  • Balodis V. Kalvišķis K. Ramans K. Liepa I. Brūmelis G. Magone I. Nikodemus O. (1993). Environmental assessment in Latvia: Overview of past research and future perspectives. J. Baltic Studies24(3) 223-232.

  • Bealey W. J. Long S. Spurgeon D. J. Leith I. Cape J. N. (2008). Review and implementation study of biomonitoring for assessment of air quality outcomes. Bristol Environment Agency Science Report - SC030175/SR2. 170 pp.

  • Choi D. S. Kayama M. Jin H. O. Lee C. H. Izuta T. Koike T. (2006). Growth and photosynthetic responses of two pine species (Pinus koraiensis and P. rigida) in a polluted industrial region in Korea. Environ. Pollut.139(3) 421-432.

  • Bauer M. L. de Hernández-Tejeda T. (2007). A review of ozone-induced effects on the forests of central Mexico. Environ. Pollut.147(3) 446-453.

  • Franzén L. G. (1990). Transport deposition and distribution of marine aerosols over Southern Sweden during dry westerly storms. Ambio19(4) 180-188.

  • Geras'kin S. Evseeva T. Oudalova A. (2011). Plants as a tool for the environmental health assessment. In: Encyclopedia of Environmental Health (pp. 571-579). Nriagu J. (ed.). Elsevier.

  • Grodzińska K. (1977). Acidity of tree bark as a bioindicator of forest pollution in southern Poland. Water Air Soil Pollut.8 3-7.

  • Harju L. Saarela K.-E. Rajander J. Lill J.-O. Lindroos A. Heselius S.-J. (2002). Environmental monitoring of trace elements in bark of Scots pine by thick-target PIXE. Nucl. Instr. Meth. Phys. Res. B189 163-167.

  • Holt E. A. Miller S. W. (2011). Bioindicators: Using organisms to measure environmental impacts. Nature Education Knowledge2(2) 8 1-5.

  • Jäger H. J. (1980). Indikation von Luftverunreinigungen durch morphometrische Untersuchungen an Hohrer Pflanzen. In: Bioindikation Teil 3 (pp. 43-52). Scubert R. & Schuh J. (Hrsg.). Halle-Wittenberg: Wiss. Beitr. Martin-Luter-Univ. 26 10.

  • Knabe W. (1982). Monitoring of air pollutants by wild life plants and plant exposure: Suitable bioindicators for different immissions types. In: Monitoring of Air Pollutants with Plants (pp. 59-72). Steubing L. Jäger H.-J. (eds.). The Hague-Boston-London: Junk Publ.

  • Kord B. Kord B. (2011). Heavy metal levels in pine (Pinus eldarica Medw.) tree barks as indicators of atmospheric pollution. BioResources6(2) 927-935.

  • Linzon S. N. (1960). The development of foliar symptoms and the possible cause and origin of white pine needle blight. Canad. J. Bot.38 153-161.

  • Lippo H. Poikolainen J. Kubin E. (1995). The use of moss lichen and pine bark in the nationwide monitoring of atmospheric heavy metal deposition in Finland. Water Air Soil Pollut.85 2241-2246.

  • Magone I. (1992). Phytoindicative assessment of environmental quality in Latvia. III. Materials and methods. Environmental Monitoring in Latvia No. 1 pp. 6-9.

  • Magone I. Karps A. Teivans A. (1992). Phytoindicative assessment of environmental quality in Latvia. IV Phytoindication results. Environmental monitoring in Latvia No. 1 p. 9-15.

  • Miller P. R. Stolte K. W. Duriscoe D. M. Pronos J. (Techn. Coordinators) (1995). Evaluating ozone air pollution effects on pines in the western United States. Albany CA: Pacific Southwest Research Station Forest Service U. S. Department of Agriculture. 78 pp.

  • Nikodemus O. Brūmelis G. Līkais S. Šarkovskis P. (1993). Bio-indication of pollutants in the Jūrmala area using Scot's pine (Pinus sylvestris) bark as a sorbent. Latvijas ZA Vēstis Nr. 9 54-57.

  • Piikki K. Klingberg J. Karlsson P. E. Pihl Karlsson G. & Pleijel H. (2008). Covariation in the diurnal variation in of ground-level ozone and temperature-nocturnal temperature inversions as a source of local variation in ozone exposure. Workshop Report. Ozone exposure and impacts on vegetation in the Nordic Countries and the Baltic States. Gothenburg Sweden.

  • Pöykiö R. Hietala J. Nurmesniemi H. (2010). Scots pine needles as bioindicators in determining the aerial distribution pattern of sulphur emissions around industrial plants. World Academy of Science Engineering and Technology68 315-318.

  • Rautio P. Huttunen S. Kukkola E. Peura R. Lamppu J. (1998). Deposited particles element concentrations and needle injuries on Scots pine along an industrial pollution transect in northern Europe. Environmental Pollution103 81-89.

  • Richards B. L.Sr. Taylor O. C. Edmunds G. F. Jr. (1968). Ozone needle mottle of pine in southern California. J. Air Pollut. Control Assoc.18 73-77.

  • Rozhkov A. S. Mikhailova T. A. (1993). The effects of fluorine-containing emissions on conifers. Berlin; Heidelberg: Springer Verlag. 143 pp.

  • Sanz M. J. Calatayud V. Calvo E. (1999). Spatial pattern of ozone injury in aleppo pine and air pollution dynamics in the Mediterranean. In: Physics and Chemistry of the Earth Part C: Solar Terrestrial&Planetary Science24(5) 495-498.

  • Schubert R. (Herausg.) (1991). Bioindikation in terrestrischen Ökosystemen. Jena: Veb Gustav Fischer Verlag. S. 338.

  • Smith W. H. (1990). Air Pollution and Forests. New York Springer Verlag. 618 pp.

  • Tingey D. T. (1989). Bioindicators in air pollution research — applications and constraints. In: Biologic Markers of Air-Pollution Stress and Damage in Forests (pp. 73-80). Committee on Biologic Markers of Air-Pollution Damage in Trees National Research Council National Academy Press Washington D. C.

  • Ward N. I. Brooks R. R. Reeves R. D. (1974). Effect of lead from motor vehicle exhausts on tree along a major through fare in Palmerstone North New Zealand. Environ. Pollut.6 149-158.

  • Weinstein L. H. Laurence J. E. (1989). Indigenous and Cultivated Plants as Bioindicators. In: Biologic Markers of Air-Pollution Stress and Damage in Forests (pp. 195-204). Committee on Biologic Markers of Air-Pollution Damage in Trees National Research Council National Academy Press Washington D. C.

  • Бериня Дз.Ж. Калвиня К.(1989). Распределение выпадений выбросов автотранспорта и загрязнение почв придорожной полосы [Distribution of transport emissions and pollution of soil along the roadsides].В кн.: Воздействие выбросов автотранспорта на природную среду.Зинатне Рига с. 22-35 (in Russian).

  • Бериня Дз.Ж. Лапиня И.М. Мелецис В.П. Спуньгис В.В. (1989).Изучение воздействия эмиссии автотранспорта на почвенные микроартроподы с применением метода главных компонент [Investiga tion of the impact of highway transport emissions on soil microarthro-pods by the method of principal components]. В кн.: Воздействие выбросов автотранспорта на природную среду(с. 48-73). Рига: Зинатне (in Russian).

  • Карпе А.Э. Мелецис В.П. Спуньгис В.В. Шарковскис П.А. (1989). Изучение воздействия выбросов автотранспорта на членистоногих травостоя [The impact of automobil transport exausts on grassland ar thropods].В кн.: Воздействие выбросов автотранспорта на природную среду(с. 74-101). Рига: Зинатне (in Russian).

Search
Journal information
Impact Factor

CiteScore 2018: 0.3

SCImago Journal Rank (SJR) 2018: 0.137
Source Normalized Impact per Paper (SNIP) 2018: 0.192

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 166 111 1
PDF Downloads 90 64 0