Genetic Structure of Isolated Vaccinium oxycoccus Populations in Lithuania

Open access

Genetic Structure of Isolated Vaccinium oxycoccus Populations in Lithuania

The genetic population structure of the wild Cranberry Vaccinium oxycoccus was studied using RAPDs (random amplified polymorphic DNA). During the last century, intensive peat bogs drainage, regulation of water levels, and intensive cranberry picking has caused a risk for survival of wild cranberry Vaccinium oxycoccus populations in Lithuania. Genetic variation among and within isolated V. oxycoccus populations was investigated with RAPD profiles. Fifty-six clones were sampled in four populations at the Čepkeliai, Žuvintas, Kamanos Reserves and Aukštaitijos National Park. RAPD analyses of nine primers showed 213 polymorphic loci in the samples. The polymorphism level in the Čepkeliai rezerve population was 56.34%, in Žuvintas 49.77%, in Kamanos 46.95% and in Aukštatija 43.19%. Polymorphism among populations was 100%. For the total sample group, Shannon's Information Index was 0.2 and Nei's gene diversity 0.12. The estimated total proportion of diversity among populations (GST) and gene flow (Nm) were 0.14 and 3.1, respectively. The UPGMA analyses have revealed that populations of V. oxycoccus are clearly separated into four lineages and only one Čepkeliai lineage had a homogenous haplotype. Others Žuvintas, Kamanos and Aukštatijos lineages differed from each other. One clone sampled from Aukštatija National Park (a8) had a unique haplotype.

Areškevičiūtė, J., Paulauskas, A., Česonienė, L., Daubaras, R. (2006). Genetic characterisation of wild cranberry (Vaccinium oxycoccos) from Čepkeliai reserve by the RAPD method. Biologija, No. 1, 5--7

Brown, A.H.D., Clegg M.T., Kahler A.L., Weir B.S. (eds.) (1990). Plant Population Genetics, Breeding, and Genetic Resources. Sunderland, Massachusetts: Sinauer, pp. 43--63.

Butkus, V., Jasionis, I., Urbonas, V., Červokas, V. (1987). Mažieji Miško turtai [Lesser Hoard of Forest]. Vilnius. Mokslas. 206 pp. (in Lithuanian).

Daubaras, R., Česonienė, L. (2004). Phenotypic properties of clones of wild cranberry (Oxycoccus palustris Pers.) and their stability. Baltic Forestry. 10(2), 87--90.

Dawson, I.K., Simsons, A.J., Waugh, R., Powell, W. (1995). Diversity andgenetic differentiation among subpopulations of Gliricidia sepium revealed by PCR-based assays. Diversity Heredity, 74, 10--18.

Ellstrand, N.C., Elam, D.R. (1993). Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Systemat., 24, 217--243.

Fisher, M., Husi, R., Prati, D., Peintinger, M., Kleunen, M., Schmid, B. (2000). RAPD variation among and within small and large populations of the rare plant Ranunculus reptans (Ranunculaceae). Amer. J. Botan., 87(8), 1128--1137.

Frankham, R. (1996). Relationship of genetic variation to population size in wild life. Conserv. Biol., 66, 1500--1508.

Frankham, R. (1995). Effective population size/adult population size ratios in wildlife: A review. Gen. Res., 66, 95--107.

Gugerli, F., Eichenberger, K., Schneller, J.J. (1999). Promiscuity in populations of the cushion plant Saxifraga oppositifolia in the Swiss Alps as inferred from RAPDs. Molec. Ecol., 8, 453--461.

Harlt, D.L., Clark, A.G. (1997). Principles of Population Genetics. Sunderland, Massachusetts: Sinauer. 542 pp.

Kreher, S.A., Fore, S.A., Collons, B.S. (2000). Genetic variation within and among patches of the clonal species, Vaccinium stamineum L. Mol. Biol., 9, 1247--1252.

Lacy, R.C. (1987). Loss of genetic diversity from managed populations: Interacting effects of drift, mutation, immigration, selection and population subdivision. Conserv. Biol., 1, 143--158.

Nei, M., Li, W.-H. (1979). Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA, 76, 5269--5273.

Nei, M.P. (1973). Analysis of Gene Diversity in Subdivided Populations. Proc. Natl. Acad. Sci. USA, 70, 3321--3323

Schoen, D.J., Brown, A.H.D. (1991). Intraspecific variation in population gene diversity and effective population size correlates with the mating system in plants. Proc. Natl. Acad. Sci. USA, 88, 4494--4497.

Sih, A., Jonsson, B.G., Luikart, G. (2000). Habitat loss: Ecological, evolutionary and genetic consequences. Trends Ecol. Evol., 15, 132--134.

Steinger, T., Korner, C., Schmid, B. (1996). Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula.Oecologia, 105, 94--99.

Stewart, C.N., Jr., Exocoffier, L. (1996). Assessing population structure and variability with RAPD data: Application to Vaccinium macrocarpon (American cranberry). Evol. Biol., 9, 153--171.

Yeh, F.C., Yang, R.C. (1999). POPGENE (Version 1.31): Population Genetic Analysis Software. Alberta, University of Albertaand Tim Boyle Center for International Forestry Research.

Van de Peer, Y., De Wachter, R. (1994). TREECON for Windows: A software package for the construction and drawing of evolutionary trees for the Microsoft Windows enwironment. Comput. Appl. Biosci., 10, 569--570.

Webb, T. III, Bartelein, P.J. (1992). Global changes during the last 3 million years: Climatic controls and biotic responses. Annu. Rev. Ecol. Syst., 23, 141--173.

Williams, J.G.K., Kubelik, A.R., Livak, K.J., Rafalski, J.A., Tingey, S.V. (1990). DNA polimorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res., 18, 6531--6535.

Journal Information

CiteScore 2017: 0.22

SCImago Journal Rank (SJR) 2017: 0.127
Source Normalized Impact per Paper (SNIP) 2017: 0.211

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 180 178 27
PDF Downloads 63 63 4