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ABSTRACT

Obesity and excess weight are a pandemic phenomenon in the modern world. Childhood and adolescent 
obesity often ends up in obesity in adults. The costs of obesity and its consequences are staggering for 
any society, crippling for countries in development. Childhood obesity is also widespread in Macedonia. 
Metabolic syndrome, dyslipidemia and carbohydrate intolerance are found in significant numbers. Parents 
and grandparents are often obese. Some of the children are either dysmorphic, or slightly retarded. We have 
already described patients with Prader-Willi syndrome, Bardet-Biedl syndrome or WAGR syndrome. A 
genetic screening for mutations in monogenic obesity in children with early, rapid-onset or severe obesity, 
severe hyperphagia, hypogonadism, intestinal dysfunction, hypopigmentation of hair and skin, postpran-
dial hypoglycaemia, diabetes insipidus, abnormal leptin level and coexistence of lean and obese siblings 
in the family discovers many genetic forms of obesity.  There are about 30 monogenic forms of obesity. 
In addition, obesity is different in ethnic groups, and the types of monogenic obesity differ. In brief, an 
increasing number of genes and genetic mechanisms in children continue to be discovered. This sheds new 
light on the molecular mechanisms of obesity and potentially gives a target for new forms of treatment. 
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OBESITY IN CHILDHOOD AND ADOLESCENCE, 
GENETIC FACTORS

Worldwide prevalence of obesity and child-
hood obesity is in constant and steep increase. 
Obesity has become pandemic. It affects at least 
250 million people (7% of the estimated current 
world population), while at least 2-3 times more 
people are overweight [1]. 

Children are affected, too. 21-24% children 
and adolescents in USA are overweight and anoth-
er 16-18% is obese. The prevalence of overweight 

children and adolescents in the United States has 
increased by 50-60% in a single generation, while 
the prevalence of obesity has doubled. Australia, 
Canada, France, Germany, Brazil, Chile, Finland, 
France, Germany, Greece, Japan, the UK, and 
the USA saw the prevalence doubled or tripled 
between the early 1970s and late 1990s [1, 2]. 

There is an ethnic and racial difference in 
the prevalence of obesity. In American Indians, 

10.2478/prilozi-2018-0013

user
Stamp



122 M Kostovski, V Tasic, N Laban, Momir Polenakovic, D Danilovski, Z Gucev

Hispanics, Hawaiians, Hispanics, and blacks obe-
sity is 10-40% higher than in whites [3]. More-
over, the majority of adults in some societies are 
overweight. In the United States, 61 percent of all 
adults are overweight. In Russia, the figure is 54 
percent; in the United Kingdom 51 percent; and 
in Germany 50 percent. For Europe as a whole, 
more than half of those between 35 and 65 years 
of age are overweight [1, 2]. 

It is of note that the adolescent obesity is pre-
dictive of adult obesity: 80% of teenagers who are 
obese continue on to be obese as adults. The preva-
lence of obesity is high in Macedonia, too [4]. There 
is also a sign of hope: the 2006 review suggests that 
the increase in childhood obesity in the USA, the 
UK, and Sweden might be abating [5, 6, 7]. 

This explosion of obesity is probably a re-
sult of historical convergence. Early on humans 
with parsimonious caloric intake had a biological 
advantage as food was scarce and starvation com-
mon. Later one, this “thrifty gene” was massively 
challenged by the abundance of food in most of 
the developed world.

Obesity is costly for any society: some esti-
mates suggest that the management of obesity in 
the USA costs approximately $100 billion yearly. 

Criteria
In children, effects of age, sex, puberty, 

and race or ethnicity on growth make classifica-
tion difficult.  Methods based on weight, weight-
height, skinfold thickness have advantages and 
disadvantages. The World Health Organization 
(WHO) bases its criteria for obesity in childhood 
and adolescence on BMI. BMI that is greater than 
the 85th (overweight) or the 95th (obesity) per-
centile, for age-matched and sex-matched control 
subjects. Overweight, obese, and morbidly obese 
refer to children and adolescents whose weights 
exceed those expected for heights by 20%, 50%, 
and 80-100%, respectively. 

The International Obesity Taskforce (IOTF) 
international standard growth chart enables global 
comparison of prevalence [8]. Many countries 
continue to use their own country-specific charts 
[9]. The dominantly used thresholds for being 
overweight or obese in childhood are: 110% or 
120% of ideal weight for height; weight-for-height 
Z scores of higher than 1 or higher than 2, and 
BMI at the 85th, 90th, 95th, and 97th percentiles 

(on the basis of international or country specif-
ic reference populations). It is of note that, the 
IOTF classification has high specificity, but low 
sensitivity [10].

There is a modification of those criteria for 
adults: grade 1 overweight (overweight) is a BMI 
of 25-29.9 kg/m2, grade 2 overweight (obesity) is 
a BMI of 30-39.9 kg/m2 and grade 3 overweight 
(severe or morbid obesity) is a BMI greater than or 
equal to 40 kg/m2. In addition, there are surgical 
definitions which describe BMI greater than 40 
kg/m2 as severe obesity, a BMI of 40-50 kg/m2 
is termed morbid obesity, and a BMI greater than 
50 kg/m2 is termed super obese. 

Pathophysiology
This is an energy imbalance between ex-

cessive energy intake and/or reduced energy 
expenditure. Sedentary lifestyle with excessive 
television viewing and/or excessive computer use 
coupled with insufficient physical activity results 
in obesity in children and adolescents. In infancy, 
excess fat deposition occurs when excess energy 
is provided, especially when the protein-to-energy 
ratio is altered. Excess weight in children depends 
on both genetic and environmental factors. 

Etiological factors are many. As much as  
>90% of cases are idiopathic, <10% are associated 
with hormonal or genetic causes [1]. Hormonal 
disorders: growth hormone deficiency and growth 
hormone resistance, hypothyroidism, leptin de-
ficiency or resistance to leptin action [11, 12, 
13], glucocorticoid excess (Cushing syndrome), 
prolactin-secreting tumors, precocious puberty, 
polycystic ovary syndrome (PCOS) all can be 
manifested with obesity. Some medications cause 
excess weight/obesity: glucocorticoids, oral con-
traceptives, insulin, sulfonylureas, risperidone, 
thiazolidinediones, clozapine, tricyclic antidepres-
sants, monoamine oxidase inhibitors (MAOIs: e.g  
phenelzine). 

Other causes

Inflammatory and infective etiology may 
exist for obesity: adenovirus 36 infection is associ-
ated with obesity in chickens and mice. In humans, 
those who are not obese have a 5% prevalence 
of adenovirus 36 infection, while those who are 
obese have a prevalence of 20-30%.
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MENDELIAN OBESITY

Mendelian pattern of inheritance is observed 
in some types of obesity [14].

Syndromic monogenic obesity
Syndromic monogenic obesity is rare and 

featuring obesity and mental retardation, dysmor-
phic features and organ-specific abnormalities [14].  

Prader–Willi syndrome (PWS), has an in-
cidence of 1 in 15000–30000 [15]. Patients have 
hypotonia, feeding difficulties, poor growth and 
delayed development in the first year of life. Later, 
patients develop hyperphagia, childhood obesity, 
short stature and cognitive disability [15].  

In PWS only the paternal gene copies are 
expressed [16]. Paternal deletions are found in 
65–75% of the patients [17], while maternal uni-
parental disomy is found in 20–30% [17]. In 1-3% 
of the patients there are imprinting defects, caused 
by epimutations or incomplete processing of the 
imprint from the father or from microdeletions in 
the DNA imprinting centre [17]. Several genes 
are implicated with PWS: makorin ring finger 
protein 3 (MKRN3), Necdin (NDN), nuclear pore 
associated protein 1 (NPAP1), SNRPN upstream 
reading frame (SNURFSNRPN), MAGE family 
member L2 (MAGEL2), and 5 small nucleolar 
RNA [18, 19, 20, 21, 22, 23]. 

Bardet–Biedl syndrome (BBS) is an autoso-
mal recessive ciliopathy with retinal degeneration, 
polydactyly cognitive disability, and genital and 
renal anomalies [24]. Obesity occurs mostly in the 
early years of life and sometimes results in T2D 
[25]. There are at least 19 BBS genes [18, 19, 20, 
26]. Interestingly the BBS proteins mediate leptin 
receptor (LEPR) signaling [27]. It has been sug-
gested that children with BBS at the initial work 
up should undertake imaging studies of the kidney 
and urinary tract. Also, in order to prevent end-
stage renal disease (ESRD), close renal follow up 
from an early age of life is proposed [28].

Alstrom syndrome is a ciliopathy recessive-
ly inherited [29], with retinal dystrophy, hearing 
impairments, early-onset obesity, insulin resis-
tance (IR) and T2D [30]. There are only ~300 
known cases so far [29]. Mutations in Alstrom 
syndrome protein 1 (ALMS1) were found in six 
unrelated families [31]. 

Albright hereditary osteodystrophy (AHO), 
or pseudohypoparathyroidism Ia,  is an autosomal 
dominant disorder with clinical features of hyper-
phagia, obesity, mental retardation, short stature, 
round facies and skeletal anomalies [32]. AHO is 
caused by the mutations in the guanine nucleotide 
binding the alpha-sub-unit of the stimulatory G 
protein (Gsα). It mediates the actions of hormones, 
neurotransmitters and paracrine/autocrine factors 
[33], resulting in resistance to the parathyroid hor-
mone, thyroid stimulating hormone and gonado-
tropins [34].

Cohen syndrome, or obesity-hypotonia 
syndrome has characteristic facial features, mi-
crocephaly, hypotonia, non-progressive psycho-
motor retardation, motor clumsiness, progressive 
myopia and truncal obesity [35]. This is an auto-
somal recessive disorder caused by mutations in 
the Cohen 1 (COH1/VPS13B) gene [36]. 

Kabuki syndrome is characterized by spe-
cific face, mental retardation, visceral and skeletal 
malformations, growth deficiency, obesity and 
endocrinological anomalies [37]. Heterozygous 
mutations in the gene lysine (K)-specific methyl-
transferase 2D (KMT2D/MLL2) as the cause of 
Kabuki syndrome in 56–76% of the cases [38, 39, 
40]. Infrequently, the syndrome has been linked to 
a mutation in the lysine (K)-specific demethylase 
6A (KDM6A) gene [39].

Borjeson–Forssman–Lehmann (BFL) is 
characterized with severe mental disability, mi-
crocephaly, epilepsy, hypogonadism, obesity and 
gynecomastia [41]. This is an X linked disorder, 
caused by the mutations in the PHD finger protein 
6 (PHF6) gene [42]. Not all patients carry muta-
tions in PHF6.

Carpenter syndrome, or acrocephalopoly-
syndactyly type II, is characterized with acroceph-
aly, preaxial polydactyly, soft tissue syndactyly, 
brachy- or agenesis mesophalangy of the hands and 
feet, congenital heart disease, hypogenitalism, obe-
sity, umbilical hernia and mental retardation [43]. 
This is an autosomal recessive disorder, caused by 
the mutations in the RAB23 gene [44, 45]. 

Smith–Magenis syndrome (SMS) is a neu-
ro-behavioral disorder characterized with obesi-
ty, sleep disturbance and multiple developmental 
anomalies [46]. This is an autosomal dominant 
disorder caused by heterozygous mutations in 
retinoic acid induced 1 (RAI1) gene. 

Wilms tumour, aniridia, genitourinary ab-
normalities and mental retardation (WAGR) syn-
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drome is caused by 11p13 deletions [47]. Obe-
sity has been observed in approximately 30% 
of WAGR patients [48]. Most of obese WAGR 
patients have altered brain-derived neurotrophic 
factor (BDNF) gene [47]. Fluorescence in situ 
hybridization (FISH) study of a 8.5 year-old girl 
revealed a deletion of the WT1 and PAX6 gene 
in the 11p13 WAGR region [49].

NON-SYNDROMIC  
MONOGENIC OBESITY

Non-syndromic monogenic obesity refers 
to a single gene disorder. 

Leptin.  A mutation in the leptin (LEP) 
gene with truncated transcription of leptin was 
described in two severely obese cousins within a 
highly consanguineous family of Pakistani origin 
[50]. Other reports followed describing patients 
with no detectable leptin, in Pakistan, Turkey and 
Egypt [51, 52]. The patients with a homozygous 
LEP mutation had detectable circulating leptin 
levels, indicating the existence of a bio-inactive 
leptin protein [53]. 

LEPR deficiencies were found in severely 
obese siblings [54], in patients with severe ear-
ly-onset obesity with mutations in LEPR [55], 
having high serum levels of leptin which indicated 
receptor insensitivity [55]. Further reports found 
Pakistani patients [56], patients in French popu-
lation from Reunion Island [57]. 

Patients with mutations in LEP or LEPR had 
severe hyperphagia, rapid weight gain within the 
first year of life, and intolerant behavior when food 
restrictions were demanded [58]. Hypo-gonadotro-
phic hypogonadism is frequent [55]. Those children 
have defective T-cell mediated immunity, with high 
rates of infection and mortality [55]. Strikingly, 
loss-of-function mutations in LEP and LEPR have 
low blood pressure, despite obesity [59]. 

Leptin treatment in a girl with leptin de-
ficiency resulted in weight reduction, reduced 
energy intake and increase in gonadotropin con-
centrations [60]. 

Loss-of-function mutations in SH2B1 an 
regulator of leptin, led to severe early-onset obesi-
ty, hyperphagia, IR, reduced height and behavioral 
abnormalities [61].

Proopiomelanocortin (POMC) deficiency in 
humans has the following characteristics: obesity, 

adrenal insufficiency, red hair, skin hypopigmenta-
tion, neonatal hypoglycemia, seizures, cholestasis 
and voracious appetite [62, 63, 64]. Severe motor 
and mental retardation was also reported [65].

Deficiency in prohormone convertase 1 
(PC1/3), results in early-onset obesity, hyperpha-
gia, postprandial hypoglycemia and other endocrine 
dysfunction. The main reason is that its role in the 
cleavage of proinsulin into insulin and POMC into 
alpha-melanocyte-stimulating hormone (α-MSH) is 
lacking [66, 67, 68]. Null mutations have diarrhea 
and diabetes insipidus [66, 68, 69, 70, 71], while a 
nonsense loss-of-function mutation at the hetero-
zygous state causes familial obesity associated with 
glucose intolerance/diabetes [72]. 

Melanocortin 4 receptor (MC4R) mutations 
cause autosomal dominant obesity. It is of note 
that not all heterozygous carriers of MC4R be-
come obese, but homozygous all have early-on-
set obesity [73]. MC4R deficient patients display  
hyperinsulinemia, increased linear growth, and an 
increase in bone mass in both children and adults 
[74, 75, 76]. Additionally, patients experience an 
increase in both fat and lean mass, which is not ob-
served in other forms of monogenic obesity [77].

The neurotrophic tyrosine kinase receptor 
type 2 (NTRK2) missense mutation was found 
in a boy with early-onset obesity, hyperphagia, 
developmental delay, impairment in short-term 
memory and impaired nociception [78].  There 
was an alteration of the BDNF stimulated protein 
kinase phosphorylation, too [78]. In addition, loss 
of one functional copy of BDNF manifested hy-
perphagia, severe obesity, cognitive impairment 
and hyperactivity [79]. 

Single-minded homologue 1 (SIM1) has an 
essential role in formation of the paraventricu-
lar nucleus (PVN) of the hypothalamus [80, 81]. 
SIM1 haploinsufficiency leads to hyperphagia, 
obesity and reduction in the PVN [82]. SIM1 hap-
loinsufficiency led to excessive growth, severe 
early-onset obesity [83]. Heterozygous deleterious 
mutations in SIM1 were observed in obese chil-
dren with additional Prader–Willi-like neurobe-
havioral features [84, 85, 86].

 KSR2 loss-of-function mutations were 
found in patients with hyperphagia, early-onset 
obesity, low heart rate, reduced basal metabolic rate 
and severe IR [87]. Mutations in Tubby bipartite 
transcription factor (TUB) were observed in pa-
tients with deteriorating vision, obesity and normal 
lucose/cholesterol/triacylglycerol levels [88]. 
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OLIGOGENIC OBESITY

In contrast to monogenic obesity which is 
rare, obesity in humans carrying heterozygous 
deleterious coding mutations in these genes is 
significantly more frequent but not fully penetrant 
[89]. Based on loss-of-function mutation frequen-
cy of MC4R in the  population of United States 
(US) (0.07 %), 426701 heterozygous MC4R car-
riers compared with 149 homozygous carriers (N 
=305000000) are probable. Partial MC4R defi-
ciency may explain obesity in 256021 individ-
uals, whereas complete MC4R deficiency may 
be the cause of obesity for only 149 subjects in 
the US population [90]. Those humans have also 
interaction with “obesogenic” environment [91, 
92]. In different ethnic communities there is a 
prevalence of 0.2–5.6% of MC4R heterozygous, 
heterozygous compound and homozygous loss-
of-function mutation carriers [73]. 

The same is true for the heterozygous loss-
of-function mutations in POMC which result in 
a non-fully penetrant form of obesity 93, 94, 95]. 
Partial deficiency of LEP and LEPR has been 
found in humans with a higher percentage of body 
fat mass [55, 96]. 

POLYGENIC OBESITY

In polygenic obesity multiple gene defects 
interact with the environment [97] e.g. A three 
SNP haplotype in ectonucleotide pyrophospha-
tase/phosphodiesterase 1 (ENPP1) was found to 
contribute to childhood and adult obesity in a re-
cessive model in European populations [98, 99].  
K121Q has also been associated with adult obesity 
in European populations [100]. 

Since the discovery of FTO, many other loci 
that contribute to BMI, adult obesity, childhood 
obesity have been identified [101, 102, 103, 104]. 
GWAS have identified 135 variants associated 
with BMI level and/or obesity status. SNPs in 
most Mendelian non-syndromic genes (BDNF, 
NTRK2, LEPR, MC4R,PCSK1, POMC, SH2B1, 
TUB) and some Mendelian syndromic genes (SD-
CCAG8, BBS4) have been proven to play role in  
polygenic obesity.

FROM GENOMICS  
TO CLINICAL PRACTICE

Strikingly, the US Supreme Court considers 
gene patenting as illegal [105]. However, some 
patents are still active, so identifying mutations 
must be done within a legal framework, using ex-
pensive patented genetic tests instead of whole ge-
nome/exome sequencing experiments [106, 107].

In children, no evidence was found for ef-
fects of 12 GWAS-based obesity marker alleles on 
weight regain [108], and only the FTO common 
variants [109] were associated with weight regain. 
However, these findings await further confirmation, 
and highlight the challenges of replicating gene–
diet interactions in randomized clinical trials [110].

Case reports on carriers of homozygous 
LEPR and MC4R mutations showed lower weight 
loss and poorer outcomes after bariatric surgery 
[111, 112]. A more complex relationship has been 
reported for heterozygous MC4R mutations, 
showing no significant effects on bariatric surgery 
outcomes [112, 113]. In a study matching carriers 
of functional MC4R mutations or MC4Rvariants 
and two randomly paired controls without muta-
tions, no difference in weight loss was observed 
[114], however, the design of functional charac-
terization of mutations and variants was ques-
tionable [115]. Carriers of rare variants of MC4R 
matched with the MC4R reference allele carriers 
also demonstrated comparable weight loss [116]. 
In the Swedish Obesity Study, FTO was associat-
ed with maximum weight loss in gastric banding 
surgery subjects but not in gastric bypass subjects 
[117]. GWAS of gastric bypass subjects found that 
the 15q26.1 locus was significantly associated 
with weight loss [118]. However, larger studies, 
longitudinal analyses, and subsequent meta-anal-
yses comprising of not only the genome, but also 
the epigenome and metagenome, are required to 
definitively establish whether treatment outcomes 
can be improved through assignment of patients 
to personalized surgical techniques.

The multifactorial origin of obesity gives rise 
to a variable response to anti-obesity medication, 
suggesting that efficacy of all new centrally active 
anti-obesity drugs [119] should be carefully assessed 
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by using genomic information to ensure proper pre-
scription and dispensing, in order to avoid unnec-
essary and potentially life-threatening side effects 
[120]. Identifying biomarkers for the development of 
diagnostics to guide prescriptions carries the poten-
tial of reducing adverse drug reactions and improv-
ing outcomes, while saving the healthcare system 
and patients from ineffective prescriptions.

CO-MORBIDITIES  
AND COMPLICATIONS

Obesity has a considerable impact on life 
quality, and some reduce life expectancy. Being 
overweight or obese between ages 14 and 19 
years was associated with increased adult mor-
tality (from age 30 years) from various systemic 
diseases [121]. Co-morbidities and complications 
are severe: 

1. Cardiovascular: essential hypertension, 
coronary artery disease, left ventricular hypertro-
phy, cor pulmonale, cardiomyopathy, accelerated 
atherosclerosis, pulmonary hypertension. CNS: 
stroke, idiopathic intracranial hypertension, mer-
algia paresthetica. 

2. Respiratory: obstructive sleep apnea, 
Pickwickian syndrome), increased predisposition 
to respiratory infections, increased incidence of 
bronchial asthma.  

3. GI: cholecystitis, cholelithiasis, steato-
hepatitis, fatty liver infiltration, reflux esophagitis. 

4. Malignant: association with 11 types 
of common human cancer are well established: 
endometrial, prostate, gallbladder, breast, colon, 
lung cancer.

5. Orthopedic:  osteoarthritis, coxa vera, 
slipped capital femoral epiphyses, Blount disease 
and Legg-Calvé-Perthes disease, lumbago. Tib-
ia vara (Blount’s disease) [122], slipped capital 
femoral epiphyses [123]. Alterations in the FTO 
gene, suggested that high-fat mass in children was 
associated with increased [124]. 

6. Metabolic:  insulin resistance, hyperin-
sulinemia, type 2 diabetes mellitus, dyslipidemia.  
The rate of increase in BMI during adolescence 
may be a significant risk factor for diabetes [125, 
126]. About half of the children with BMI higher 
than the 97th percentile have one or more of the dis-
orders that make up the metabolic syndrome [127]. 

7. Reproductive:  anovulation, early puberty, 
infertility, hyperandrogenism and polycystic ova-
ries in women, hypogonadotropic hypogonadism 
in men. There is an acceleration in timing of the 
larche and menarche in girls [128, 129], pubertal 
advancement in boys [130] and adverse effects on 
maturation [131] and alignment [132] of devel-
oping bones in both sexes. The advanced skeletal 
maturation has been attributed to increased adi-
pose tissue aromatization. Pubertal timing might 
be altered by nutrition-related signals (eg, insulin 
and leptin) [133]. 

8. Obstetric and perinatal:  pregnancy-related 
hypertension, fetal macrosomia, pelvic dystocia. 

9. Surgical: increased surgical risk and post-
operative complications. 

10. Psychologic:  social isolation, peer prob-
lems, depression.

11. Miscellaneous: reduced mobility, dif-
ficulty maintaining personal hygiene, Stress in-
continence, Intertrigo (bacterial and/or fungal), 
acanthosis nigricans, hirsutism, increased risk 
for cellulitis and carbuncles, venous varicosities, 
lower extremity venous and/or lymphatic edema.

TREATMENT 

The team approach to therapy (nurse edu-
cators, nutritionists, exercise physiologists, and 
counselors) is essential [134]. Family-based be-
havioral weight control is effective [135]. Physi-
cal activity should be encouraged and time spent 
watching television and playing computer games 
reduced. The quantity and the content of daily 
meals should be adjusted: less sugars, more veg-
etables and fruit. Improving fitness in children 
correlates with a lower incidence of obesity in 
adolescence [136]. The severe controlled–energy 
diets is not fit for children and adolescents.

Medication.  Sibutramine may be classified 
as an anorectic drug, whereas orlistat’s [18, 19] 
mechanism of action involves induction of lipid 
maldigestion. A randomized placebo-controlled 
trial of sibutramine in adolescents resulted in a 
significant reduction in body mass index (BMI), 
without [20]. Benzphetamine (Didrex), phendime-
trazine (Bontril), diethylpropion, and phentermine 
(Ionamin) have also been used.  

Rhythm Pharmaceuticals (ESPE 2016) pre-
sented preliminary results from a phase 1b clin-
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ical trial assessing the safety and efficiency of 
setmelanotide (RM-493), an MC4R agonist, in 
obese patients with a heterozygous genetic defect 
in MC4R. Patients lost weight and the treatment 
was well tolerated. The same company is now 
extending the clinical trial to patients with mono-
genic obesity mutations in POMC (ESPE 2016).

Surgical Care. Various bariatric surgical 
procedures have been used in some adolescents 
[137]. Usual criteria include patients >15 y, with 
a BMI of more than 40 or weight exceeding 100% 
of ideal body weight (IBW).

In the vertical-banded gastroplasty (VBG), a 
pouch of 15-mL to 30-mL capacity is constructed, 
greatly reducing the amount of food that can be 
eaten. In gastric bypass, a larger pouch that empties 
into the jejunum is created [138]. Laparoscopic 
placement of an adjustable gastric band (LAGB) 
has supplanted the vertical-banded gastroplasty 
as safer and reversible. LAGB positions a collar 
with an internal, saline-filled balloon around the 
upper stomach [139]. 
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Резиме

ОБЕЗНОСТА ВО ДЕТСТВОТО И АДОЛЕСЦЕНЦИЈАТА, ГЕНЕТСКИ ФАКТОРИ

Марко Костовски1, Велибор Тасиќ1, Невена Лабан1,  
Момир Поленаковиќ2, Драган Даниловски1, Зоран Гучев1

1 Медицински факултет, Универзитет „Св. Кирил и Методиј“,  
50 Дивизија бб, 1000 Скопје, Република Македонија

2 Македонска академија на науките и уметностите, Скопје, Република Македонија

Обезноста и прекумерната тежина се пандемски феномени во модерниот свет. Адултната 
обезност често е резултат на обезноста во детството и во адолесценцијата. Трошоците поврзани со 
обезноста и компликациите што произлегуваат од неа се запрепастувачки, особено за земјите во 
развој. Обезноста во детството е, исто така, широко распространета и во Македонија. Метаболни­
от синдром, дислипидемијата и јаглехидратната интолеранција се присутни во значителен број. 
Родителите, бабите и дедовците се често со обезност. Некои од децата се или дизморфични или 
со благо заостанување во менталниот развој, како што ги имаме веќе опишано кај синдромите на 
Prader-Willi, Bardet-Biedl или WAGR. 

Генетскиот скрининг за мутации за моногенетската обезност кај децата со ран и брз почеток на 
обезноста, односно екстремна обезност, тешка хиперфагија, хипогонадизам, интестинална дисфунк­
ција, хипопигментација на косата или кожата, постпрандијална хипогликемија, инсипиден дијабет, 
абнормални нивоа на лептин и постоење браќа и сестри со обезност или посно тело во семејството, 
открива многу форми на обезност.

Дополнително, како што обезноста покажува разлики во различни етнички групи така и типовите 
на моногенетска обезност се разликуваат. Накратко, сѐ поголем број гени и генетски механизми сѐ 
уште се откриваат кај децата. Ова отвора нови порти во молекуларните механизми на обезноста и 
дава нови потенцијални форми на третман. 

Клучни зборови: обезитет, деца, адолесценти, генетски причини




