Systematizing Genome Privacy Research: A Privacy-Enhancing Technologies Perspective

Open access


Rapid advances in human genomics are enabling researchers to gain a better understanding of the role of the genome in our health and well-being, stimulating hope for more effective and cost efficient healthcare. However, this also prompts a number of security and privacy concerns stemming from the distinctive characteristics of genomic data. To address them, a new research community has emerged and produced a large number of publications and initiatives. In this paper, we rely on a structured methodology to contextualize and provide a critical analysis of the current knowledge on privacy-enhancing technologies used for testing, storing, and sharing genomic data, using a representative sample of the work published in the past decade. We identify and discuss limitations, technical challenges, and issues faced by the community, focusing in particular on those that are inherently tied to the nature of the problem and are harder for the community alone to address. Finally, we report on the importance and difficulty of the identified challenges based on an online survey of genome data privacy experts.

[ABOS15] M. Akgün, A. O. Bayrak, B. Ozer, and M. Ş. Sağgıroğglu. Privacy Preserving Processing of Genomic Data: A Survey. Journal of Biomedical Informatics, 56:103–111, 2015.

[ADHT15] E. Ayday, E. De Cristofaro, J.-P. Hubaux, and G. Tsudik. The Chills and Thrills of Whole Genome Sequencing. IEEE Computer, 2015.

[AKSX04] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order Preserving Encryption for Numeric Data. In ACM SIGMOD, pages 563–574, 2004.

[AMH+16] A. Aziz, M. Momin, M. Z. Hasan, N. Mohammed, and D. Alhadidi. Secure and Efficient Multiparty Computation on Genomic Data. In IDEAS, pages 278–283, 2016.

[ARH+14] E. Ayday, J. L. Raisaro, U. Hengartner, A. Molyneaux, and J.-P. Hubaux. Privacy-Preserving Processing of Raw Genomic Data. In DPM, pages 133–147, 2014.

[ARHR13] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and J. Rouge-mont. Protecting and Evaluating Genomic Privacy in Medical Tests and Personalized Medicine. In ACM WPES, pages 95–106, 2013.

[ASA+17] M. M. A. Aziz, M. N. Sadat, D. Alhadidi, S. Wang, X. Jiang, C. L. Brown, and N. Mohammed. Privacy-Preserving Techniques of Genomic Data – A Survey. Briefings in Bioinformatics, (September):1–9, 2017.

[Ash16] E. A. Ashley. Towards precision medicine. Nature Reviews Genetics, 17(9):507–522, 2016.

[BA10] M. Blanton and M. Aliasgari. Secure Outsourcing of DNA Searching via Finite Automata. In DBSec, pages 49–64, 2010.

[BBD+11] P. Baldi, R. Baronio, E. De Cristofaro, P. Gasti, and G. Tsudik. Countering GATTACA: Efficient and Secure Testing of Fully-Sequenced Human Genomes. In ACM CCS, pages 691–702, 2011.

[BBH+16] M. Backes, P. Berrang, A. Hecksteden, M. Humbert, A. Keller, and T. Meyer. Privacy in Epigenetics: Temporal Linkability of microRNA Expression Profiles. In USENIX Security Symposium, pages 1223–1240, 2016.

[BBHM16] M. Backes, P. Berrang, M. Humbert, and P. Manoharan. Membership Privacy in MicroRNA-Based Studies. In ACM CCS, pages 319–330, 2016.

[BER+15] L. Barman, M.-T. Elgraini, J. L. Raisaro, J.-P. Hubaux, and E. Ayday. Privacy threats and practical solutions for genetic risk tests. In IEEE Security and Privacy Workshops, pages 27–31, 2015.

[BFG+17] D. Bick, P. C. Fraser, M. F. Gutzeit, J. M. Harris, T. M. Hambuch, D. C. Helbling, H. J. Jacob, J. N. Kersten, S. R. Leuthner, T. May, et al. Successful Application of Whole Genome Sequencing in a Medical Genetics Clinic. Journal of Pediatric Genetics, 6(02):061–076, 2017.

[BHF+08] P. R. Burton, A. L. Hansell, I. Fortier, T. A. Manolio, M. J. Khoury, J. Little, and P. Elliott. Size Matters: Just How Big is BIG? Quantifying Realistic Sample Size Requirements For Human Genome Epidemiology. International Journal of Epidemiology, 38(1):263–273, 2008.

[BHOS12] J. Bonneau, C. Herley, P. C. v. Oorschot, and F. Stajano. The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web Authentication Schemes. In IEEE Security & Privacy, 2012.

[BLN14] J. W. Bos, K. Lauter, and M. Naehrig. Private Predictive Analysis on Encrypted Medical Data. Journal of Biomedical Informatics, 50:234–243, 2014.

[BLST10] R. Bhaskar, S. Laxman, A. Smith, and A. Thakurta. Discovering Frequent Patterns in Sensitive Data. In KDD, pages 503–512, 2010.

[BMD+17] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi. Software Grand Exposure: SGX Cache Attacks Are Practical. arXiv preprint 1702.07521, 2017.

[Bra14] R. Brandom. New Documents Reveal Which Encryption Tools the NSA Couldn’t Crack., 2014.

[But07] J. M. Butler. Short Tandem Repeat Typing Technologies Used In Human Identity Testing. Biotechniques, 43(4):2–5, 2007.

[CGKS95] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private Information Retrieval. In FOCS, pages 41–50, 1995.

[CKL15] J. H. Cheon, M. Kim, and K. Lauter. Homomorphic Computation of Edit Distance. In FC, pages 194–212, 2015.

[CKM12] M. Canim, M. Kantarcioglu, and B. Malin. Secure Management of Biomedical Data With Cryptographic Hardware. IEEE Transactions on Information Technology in Biomedicine, 16(1):166–175, 2012.

[CPWT12] Y. Chen, B. Peng, X. Wang, and H. Tang. Large-Scale Privacy-Preserving Mapping of Human Genomic Sequences on Hybrid Clouds. In NDSS, 2012.

[CWJ+17] F. Chen, S. Wang, X. Jiang, S. Ding, Y. Lu, J. Kim, S. C. Sahinalp, C. Shimizu, J. C. Burns, V. J. Wright, et al. PRINCESS: Privacy-Protecting Rare Disease International Network Collaboration via Encryption through Software Guard extensionS. Bioinformatics, 33(6):871–878, 2017.

[DCLZ16] E. De Cristofaro, K. Liang, and Y. Zhang. Privacy-Preserving Genetic Relatedness Test. In GenoPri, 2016.

[DFB+14] M. Djatmiko, A. Friedman, R. Boreli, F. Lawrence, B. Thorne, and S. Hardy. Secure Evaluation Protocol for Personalized Medicine. In ACM WPES, pages 159–162, 2014.

[DFT13] E. De Cristofaro, S. Faber, and G. Tsudik. Secure Genomic Testing With Size-and Position-Hiding Private Substring Matching. In ACM WPES, pages 107–118, 2013.

[DGA10] G. De Los Campos, D. Gianola, and D. B. Allison. Predicting genetic predisposition in humans: The promise of whole-genome markers. Nature Reviews Genetics, 11(12):880–886, 2010.

[DGT12] E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and Private Computation of Cardinality of Set Intersection and Union. In CANS, pages 218–231, 2012.

[DMNS06] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating Noise to Sensitivity in Private Data Analysis. In TCC, volume 3876, pages 265–284, 2006.

[DRS04] Y. Dodis, L. Reyzin, and A. Smith. Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. In Eurocrypt, pages 523–540, 2004.

[DSS+15] C. Dwork, A. Smith, T. Steinke, J. Ullman, and S. Vadhan. Robust Traceability from Trace Amounts. In FOCS, pages 650–669, 2015.

[DT10] E. De Cristofaro and G. Tsudik. Practical Private Set Intersection Protocols With Linear Complexity. In FCDS, pages 143–159, 2010.

[EI13] E. Evangelou and J. P. Ioannidis. Meta-Analysis Methods for Genome-Wide Association Studies and Beyond. Nature Reviews Genetics, 14(6):379–389, 2013.

[EN14] Y. Erlich and A. Narayanan. Routes for Breaching and Protecting Genetic Privacy. Nature Reviews Genetics, 15(6):409–421, 2014.

[Eur16] European Parliament and Council of European Union. General Data Protection Regulation. Official Journal of the European Union, L119:1–88, May 2016.

[FLJ+14] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, and T. Ristenpart. Privacy in Pharmacogenetics: An Endto-End Case Study of Personalized Warfarin Dosing. In USENIX Security, pages 17–32, 2014.

[FSC11] J. H. Fowler, J. E. Settle, and N. A. Christakis. Correlated genotypes in friendship networks. Proceedings of the National Academy of Sciences, 108(5):1993–1997, 2011.

[FSU11] S. E. Fienberg, A. Slavkovic, and C. Uhler. Privacy preserving GWAS data sharing. In ICDM Workshops, pages 628–635, 2011.

[Fur10] B. Furht. Cloud Computing Fundamentals. In Handbook of Cloud Computing, pages 3–19. Springer, 2010.

[GAM+16] R. Ghasemi, M. M. AlAziz, N. Mohammed, M. H. Dehkordi, and X. Jiang. Private and Efficient Query Processing on Outsourced Genomic Databases. IEEE Journal of Biomedical and Health Informatics, 21(5):1466–1472, 2016.

[Gen17] Genomics England., 2017.

[GHKT+14] C. Gilissen, J. Y. Hehir-Kwa, D. T. Thung, M. van de Vorst, B. W. van Bon, M. H. Willemsen, M. Kwint, I. M. Janssen, A. Hoischen, A. Schenck, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature, 511(7509):344–347, 2014.

[Glo17] Global Alliance for Genomics and Health., 2017.

[GMG+13] M. Gymrek, A. L. McGuire, D. Golan, E. Halperin, and Y. Erlich. Identifying personal genomes by surname inference. Science, 339(6117):321–324, 2013.

[GMM16] S. Goodwin, J. D. McPherson, and W. R. McCombie. Coming of age: Ten years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6):333–351, 2016.

[GO96] O. Goldreich and R. Ostrovsky. Software protection and simulation on oblivious RAMs. Journal of the ACM, 43(3):431–473, 1996.

[HAF+15] Z. Huang, E. Ayday, J. Fellay, J.-P. Hubaux, and A. Juels. GenoGuard: Protecting Genomic Data Against Brute-Force Attacks. In IEEE Security & Privacy, pages 447–462, 2015.

[HAHT14] M. Humbert, E. Ayday, J.-P. Hubaux, and A. Telenti. Reconciling Utility With Privacy in Genomics. In ACM WPES, pages 11–20, 2014.

[HAL+16] Z. Huang, E. Ayday, H. Lin, R. S. Aiyar, A. Molyneaux, Z. Xu, J. Fellay, L. M. Steinmetz, and J.-P. Hubaux. A privacy-preserving solution for compressed storage and selective retrieval of genomic data. Genome Research, 26(12):1687–1696, 2016.

[HCP17] M. Hähnel, W. Cui, and M. Peinado. High-Resolution Side Channels for Untrusted Operating Systems. In USENIX, 2017.

[HFH+14] D. He, N. A. Furlotte, F. Hormozdiari, J. W. J. Joo, A. Wadia, R. Ostrovsky, A. Sahai, and E. Eskin. Identifying Genetic Relatives Without Compromising Privacy. Genome Research, 24(4):664–672, 2014.

[HHT14] K. Hamacher, J. P. Hubaux, and G. Tsudik. Genomic Privacy (Dagstuhl Seminar 13412). In Dagstuhl Reports, volume 3, 2014.

[HJW+14] F. Hormozdiari, J. W. J. Joo, A. Wadia, F. Guan, R. Ostrosky, A. Sahai, and E. Eskin. Privacy Preserving Protocol for Detecting Genetic Relatives Using Rare Variants. Bioinformatics, 30(12):204–211, 2014.

[HKMT16] J. P. Hubaux, S. Katzenbeisser, B. Malin, and G. Tsudik. Genomic Privacy (Dagstuhl Seminar 15431). In Dagstuhl Reports, volume 5, 2016.

[HL10] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and Constructions. Springer Science & Business Media, 2010.

[HSR+08] N. Homer, S. Szelinger, M. Redman, D. Duggan, W. Tembe, J. Muehling, J. V. Pearson, D. A. Stephan, S. F. Nelson, and D. W. Craig. Resolving Individuals Contributing Trace Amounts of DNA to Highly Complex Mixtures Using High-Density SNP Genotyping Microarrays. PLoS Genet, 4(8):e1000167, 2008.

[IGNC12] H. K. Im, E. R. Gamazon, D. L. Nicolae, and N. J. Cox. On Sharing Quantitative Trait GWAS Results in an Era of Multiple-Omics Data and the Limits of Genomic Privacy. The American Journal of Human Genetics, 90(4):591–598, 2012.

[ISO17] ISOGG. List of DNA Testing Companies., 2017.

[JR14] A. Juels and T. Ristenpart. Honey Encryption: Security Beyond the Brute-Force Bound. In Eurocrypt, pages 293–310, 2014.

[JS13] A. Johnson and V. Shmatikov. Privacy-Preserving Data Exploration in Genome-Wide Association Studies. In ACM KDD, pages 1079–1087, 2013.

[JWB+17] K. A. Jagadeesh, D. J. Wu, J. A. Birgmeier, D. Boneh, and G. Bejerano. Deriving Genomic Diagnoses Without Revealing Patient Genomes. Science, 357(6352):692–695, 2017.

[JZW+14] X. Jiang, Y. Zhao, X. Wang, B. Malin, S. Wang, L. Ohno-Machado, and H. Tang. A Community Assessment of Privacy Preserving Techniques for Human Genomes. BMC Medical Informatics and Decision Making, 14(Suppl 1):S1, 2014.


[NAC+15] M. Naveed, E. Ayday, E. W. Clayton, J. Fellay, C. A. Gunter, J.-P. Hubaux, B. A. Malin, and X. Wang. Privacy In The Genomic Era. ACM Computing Surveys, 48(1):1–43, 2015.

[NAP+14] M. Naveed, S. Agrawal, M. Prabhakaran, X. Wang, E. Ayday, J.-P. Hubaux, and C. Gunter. Controlled Functional Encryption. In ACM CCS, pages 1280–1291, 2014.

[Nat17] National Human Genome Research Institute. The Cost of Sequencing a Human Genome., 2017.

[Nat18] Nature. The Ethics of Catching Criminals Using Their Family’s DNA., 2018.

[Nav01] G. Navarro. A Guided Tour To Approximate String Matching. ACM Computing Surveys, 33(1):31–88, 2001.

[NIH17] NIH. The All of Us Research Program., 2017.

[PAB+15] A. A. Philippakis, D. R. Azzariti, S. Beltran, A. J. Brookes, C. A. Brownstein, M. Brudno, H. G. Brunner, O. J. Buske, K. Carey, C. Doll, et al. The Match-maker Exchange: A Platform for Rare Disease Gene Discovery. Human Mutation, 36(10):915–921, 2015.

[Pal15] K. Palmer. Another Personal Genetics Company Is Sharing Client Data., 2015.

[Rom18] A. Romano. DNA profiles from ancestry websites helped identify the Golden State Killer suspect., 2018.

[RTJ+17] L. Kamm, D. Bogdanov, S. Laur, and J. Vilo. A New Way To Protect Privacy in Large-Scale Genome-Wide Association Studies. Bioinformatics, 29(7):886–893, 2013.

[KDB+11] C. C. Khor, S. Davila, W. B. Breunis, Y.-C. Lee, C. Shimizu, V. J. Wright, R. S. Yeung, D. E. Tan, K. S. Sim, J. J. Wang, et al. Genome-Wide Association Study Identifies FCGR2A as a Susceptibility Locus for Kawasaki Disease. Nature Genetics, 43(12):1241–1246, 2011.

[Kei10] B. Keim. 10 years on, the genome revolution is only just beginning., 2010.

[KES+16] S. Khattak, T. Elahi, L. Simon, C. M. Swanson, S. J. Murdoch, and I. Goldberg. SoK: Making Sense of Censorship Resistance Systems. Proceedings on Privacy Enhancing Technologies, 2016(4):37–61, 2016.

[KJLM08] M. Kantarcioglu, W. Jiang, Y. Liu, and B. Malin. A Cryptographic Approach to Securely Share and Query Genomic Sequences. IEEE Transactions on Information Technology in Biomedicine, 12(5):606–617, 2008.

[KL15] M. Kim and K. Lauter. Private Genome Analysis Through Homomorphic Encryption. BMC Medical Informatics and Decision Making, 15(5):S3, 2015.

[KPK+14] N. Karvelas, A. Peter, S. Katzenbeisser, E. Tews, and K. Hamacher. Privacy-Preserving Whole Genome Sequence Processing Through Proxy-Aided ORAM. In ACM WPES, pages 1–10, 2014.

[Led15] H. Ledford. Crispr, the disruptor. Nature, 2015.

[LLAN14] K. Lauter, A. López-Alt, and M. Naehrig. Private Computation on Encrypted Genomic Data. In Latin-crypt, pages 3–27, 2014.

[LQS+13] N. Li, W. Qardaji, D. Su, Y. Wu, and W. Yang. Membership Privacy: A Unifying Framework for Privacy Definitions. In ACM CCS, pages 889–900, 2013.

[LSM+17] C. Lippert, R. Sabatini, M. C. Maher, E. Y. Kang, S. Lee, O. Arikan, A. Harley, A. Bernal, P. Garst, V. Lavrenko, et al. Identification of Individuals by Trait Prediction Using Whole-Genome Sequencing Data. Proceedings of the National Academy of Sciences, 114(38):10166–10171, 2017.

[Mar13] P. Marks. Submarine Internet Cables Are a Gift for Spooks., 2013.

[MRA+16] P. J. McLaren, J. L. Raisaro, M. Aouri, M. Rotger, E. Ayday, I. Bartha, M. B. Delgado, Y. Vallet, H. F. Günthard, M. Cavassini, et al. Privacy-Preserving Genomic Testing in the Clinic: A Model Using HIV Treatment. Genetics In Medicine, 18(8):814–822, 2016.

J. L. Raisaro, F. Tramèr, Z. Ji, D. Bu, Y. Zhao, K. Carey, D. Lloyd, H. Sofia, D. Baker, P. Flicek, et al. Addressing Beacon Re-Identification Attacks: Quantification and Mitigation of Privacy Risks. Journal of the American Medical Informatics Association, page ocw167, 2017.

[SAW13] L. Sweeney, A. Abu, and J. Winn. Identifying Participants in the Personal Genome Project by Name. arXiv:1304.7605, 2013.


S. S. Shringarpure and C. D. Bustamante. Privacy Risks from Genomic Data-Sharing Beacons. The American Journal of Human Genetics, 97(5):631–646, 2015.


S. Simmons and B. Berger. Realizing Privacy Preserving Genome-Wide Association Studies. Bioinformatics, 32(9):1293–1300, 2016.

[SFD+07] B. E. Stranger, M. S. Forrest, M. Dunning, C. E. Ingle, et al. Relative Impact Of Nucleotide And Copy Number Variation On Gene Expression Phenotypes. Science, 315(5813):848–853, 2007.

[SHS+15] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and F. Koushanfar. Tinygarble: Highly Compressed and Scalable Sequential Garbled Circuits. In IEEE Security and Privacy, pages 411–428, 2015.

[SLH+17] J. S. Sousa, C. Lefebvre, Z. Huang, J. L. Raisaro, C. Aguilar-Melchor, M.-O. Killijian, and J.-P. Hubaux.

Efficient and Secure Outsourcing of Genomic Data Storage. BMC Medical Genomics, 10(2):46, 2017.

[SNR16] K. Shimizu, K. Nuida, and G. Rätsch. Efficient Privacy-Preserving String Search and an Application in Genomics. Bioinformatics, 32(11):1652–1661, 2016.

[SRG+14] N. P. Smart, V. Rijmen, B. Gierlichs, K. G. Paterson, M. Stam, B. Warinschi, and G. Watson. Algorithms, Key Size and Parameters Report., 2014.

[SST+14] B. Stade, D. Seelow, I. Thomsen, M. Krawczak, and A. Franke. GrabBlur: A Framework to Facilitate the Secure Exchange of Whole-Exome and-Genome SNV Data Using VCF Files. BMC Genomics, 15(4):S8, 2014.

[SW17] of genomic data sharing through beacon services. BMC Medical Genomics, 10(2):39, 2017.

[WVX+17] Z. Wan, Y. Vorobeychik, W. Xia, E. W. Clayton, M. Kantarcioglu, and B. Malin. Expanding Access to Large-Scale Genomic Data While Promoting Privacy: A Game Theoretic Approach. The American Journal of Human Genetics, 100(2):316–322, 2017.

[WZD+16] S. Wang, Y. Zhang, W. Dai, K. Lauter, M. Kim, Y. Tang, H. Xiong, and X. Jiang. HEALER: Homomorphic computation of ExAct Logistic rEgRession for secure rare disease variants analysis in GWAS. Bioinformatics, 32(2):211–218, 2016.

[XKB+14] W. Xie, M. Kantarcioglu, W. S. Bush, D. Crawford, J. C. Denny, R. Heatherly, and B. A. Malin. SecureMA: Protecting Participant Privacy in Genetic Association Meta-Analysis. Bioinformatics, 30(23):3334–3341, 2014.

[XKW+14] L. Xu, H. Kim, X. Wang, W. Shi, and T. Suh. Privacy Preserving Large Scale DNA Read-Mapping in MapReduce Framework Using FGPAs. In FPL, pages 1–4, 2014.

[Yao86] A. Yao. How to generate and exchange secrets. In FOCS, pages 162–167, 1986.

[YFSU14] X. Shi and X. Wu. An Overview of Human Genetic Privacy. Annals of the New York Academy of Sciences, 1387(1):61–72, 2017.

[THHA15] F. Tramèr, Z. Huang, J.-P. Hubaux, and E. Ayday. Differential Privacy with Bounded Priors: Reconciling Utility and Privacy in Genome-Wide Association Studies. In ACM CCS, pages 1286–1297, 2015.

[Tho16] I. Thomson. Microsoft Researchers Smash Homomorphic Encryption Speed Barrier., 2016.

[TPKC07] J. R. Troncoso-Pastoriza, S. Katzenbeisser, and M. Celik. Privacy Preserving Error Resilient DNA Searching Through Oblivious Automata. In ACM CCS, pages 519–528, 2007.

[USF13] F. Yu, S. E. Fienberg, A. B. Slavković, and C. Uhler. Scalable Privacy-Preserving Data Sharing Methodology for Genome-Wide Association Studies. Journal of Biomedical Informatics, 50:133–141, 2014.

[YSK+13] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba. Secure Pattern Matching Using Somewhat Homomorphic Encryption. In ACM CCSW, pages 65–76, 2013.

[ZBA15] Y. Zhang, M. Blanton, and G. Almashaqbeh. Secure Distributed Genome Analysis for GWAS and Sequence Comparison Computation. BMC Medical Informatics and Decision Making, 15(5):S4, 2015.

[ZBG+14] S. Zeuzem, T. Berg, E. Gane, P. Ferenci, G. R. Foster, M. W. Fried, C. Hezode, G. M. Hirschfield, I. Jacobson, I. Nikitin, et al. Simeprevir increases rate of sustained virologic response among treatment-experienced patients with hcv genotype-1 infection: a phase iib trial. Gastroenterology, 146(2):430–441, 2014.

[ZDJ+15] Y. Zhang, W. Dai, X. Jiang, H. Xiong, and S. Wang. FORESEE: Fully Outsourced secuRe gEnome Study basEd on homomorphic Encryption. BMC Medical Informatics and Decision Making, 15(5):S5, 2015.

[ZDN18] ZDNet. IBM Warns Of Instant Breaking of Encryption by Quantum Computers: ‘Move Your Data Today’., 2018.

[ZWJ+14] Y. Zhao, X. Wang, X. Jiang, L. Ohno-Machado, and H. Tang. Choosing Blindly but Wisely: Differentially Private Solicitation of DNA Datasets for Disease Marker Discovery. Journal of the American Medical Informatics Association, 22(1):100–108, 2014.

C. Uhlerop, A. Slavković, and S. E. Fienberg. Privacy-Preserving Data Sharing for Genome-Wide Association Studies. The Journal of Privacy and Confidentiality, 5(1):137–166, 2013.

[Wag15] I. Wagner. Genomic Privacy Metrics: A Systematic Comparison. In IEEE Security & Privacy Workshops, pages 50–59, 2015.

[WHZ+15] X. S. Wang, Y. Huang, Y. Zhao, H. Tang, X. Wang, and D. Bu. Efficient Genome-Wide, Privacy-Preserving Similar Patient Query Based on Private Edit Distance. In ACM CCS, pages 492–503, 2015.

[WJS+17] S. Wang, X. Jiang, S. Singh, R. Marmor, L. Bonomi, D. Fox, M. Dow, and L. Ohno-Machado. Genome Privacy: Challenges, Technical Approaches to Mitigate Risk, and Ethical Considerations in the United States. Annals of the New York Academy of Sciences, 1387(1):73–83, 2017.

[WLW+09] R. Wang, Y. F. Li, X. Wang, H. Tang, and X. Zhou.

Learning Your Identity and Disease from Research Papers: Information Leaks in Genome Wide Association Study. In ACM CCS, pages 534–544, 2009.

[WMM+13] D. Welter, J. MacArthur, J. Morales, T. Burdett, P. Hall, H. Junkins, A. Klemm, P. Flicek, T. Manolio, L. Hindorff, et al. The NHGRI GWAS Catalog, a Curated Resource of SNP-Trait Associations. Nucleic Acids Research, 42(D1):D1001–D1006, 2013.

[WVKM17] Z. Wan, Y. Vorobeychik, M. Kantarcioglu, and B. Malin. Controlling the signal: Practical privacy protection

Journal Information


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2280 2280 1291
PDF Downloads 113 113 57