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ABSTRACT

The hydrodynamic problem of a two-dimensional wedge entering into a nonlinear wave in three degrees of freedom is 
investigated based on the incompressible velocity potential theory. The problem is solved through the boundary element 
method in the time domain. To avoid numerical difficulties due to an extremely small contact area at the initial stage, 
a stretched coordinate system is used based on the ratio of the Cartesian system in the physical space to the distance 
travelled by the wedge in the vertical direction. The mutual dependence of body motion and wave loading is decoupled 
by using the auxiliary function method. Detailed results about body   accelerations, velocities and displacements 
at different Froude numbers or different waves are provided, and the mutual effect between body motion and wave 
loading is analysed in depth.
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INTRODUCTION

The impact between wave and structure occurs very often 
in violent sea conditions. When a ship advances in rough 
seas, the bow may emerge from the water and then re-enter 
into the wave with high speed. In those cases, the local area 
of hull surface would surfer a very large impact pressure, and 
a great risk would be imposed to the structure. The wave/
structure impact can also be observed in problems of wave 
energy converters operating in rough seas, large waves hitting 
an offshore platform, and liquid sloshing in a tank. Those 
phenomena are dynamically equivalent to a wedge entering 
freely into a wave.

The past research often focused on the wedge entry into 
calm water. Wagner’s theory was commonly used to analyse 
this problem, especially for bodies with small deadrise angles. 

Most popular works on the subject include those by: Howison 
et al. [1] for bodies with small deadrise angles, Faltinsen [2] on 
the wedge with finite deadrise angle, and Korobkin et al. [3] 
for the body with elastic deformation. In contrast to Wagner’s 
theory, the fully nonlinear boundary element method 
is more accurate in simulating such a nonlinear process. 
Dobrovolskaya [4] and Zhao & Faltinsen [5] considered the 
vertical entry of a wedge into water. Semenov & Iafarati 
[6] solved the problem of vertical entry of an asymmetric 
wedge, while Xu et al. [7] investigated the case of oblique 
entry of an asymmetric wedge. The problem of twin wedges 
was analysed by Wu [8]. Wu et al. [9] considered the vertical 
entry of a wedge in free fall motion with a single degree of 
freedom, and Xu et al. [10] considered the free fall with three 
degrees of freedom, in which the vertical motion is coupled 
with the horizontal and rotational motion. 
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Wave slamming is a common phenomenon but rarely 
considered in the research. Faltinsen [11] was the first to 
investigate the slamming effect of a wedge advancing in 
waves. In his work, the slamming pressure of ship section is 
calculated based on Wagner’s theory. Sun et al. [12] adopted 
the boundary element method to investigate the problem of 
a wedge entering into waves in a given motion. In that work, 
the mutual dependence between wave and body motion is not 
considered, however, this coupling effect plays a significant 
role in modelling the physical process of wedge entering 
into waves.

In this paper, the coupled process of a wedge entering 
into waves in free motion is investigated. The boundary 
element method is adopted, and the fully nonlinear 
boundary conditions are imposed on the free surface and 
the instantaneous body surface. Some analyses associated 
with the Froude number and wave effect are undertaken. 
On the one hand, unlike the calm water cases, the effect 
of Froude number is changed noticeably by the waves. The 
reason for this is that the fluid flow velocity distribution 
is altered in the wave field, and thus free surface profiles, 
pressure distributions and motions under different Froude 
numbers reveal some peculiar features. On the other hand, 
the effects of wave height and wave number which are closely 
related to wave effects are studied in depth. It should be noted 
that the reported investigations mainly focus on slamming 
effects and motion traits during the short interval when the 
slamming occurs.

MATHEMATICAL MODEL AND 
NUMERICAL PROCEDURE

PHYSICAL PAR AMETERS AND CARTESIAN 
COORDINATE SYSTEM 
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Fig. 1. Sketch of the problem

The 2-D problem considered here is illustrated in Fig. 1, 
which shows the wedge entering into the wave in three degrees 
of freedom. The Cartesian coordinate system O xy−  with 
the origin O  fixed at the wedge tip is defined so that the 
x-axis points horizontally and the y -axis points upwards. 
The horizontal, vertical and rotational velocities about the 
gravity centre G  are denoted as U , V  and Ω , respectively. 

V  is positive when pointing downwards, while Ω  when 
anti-clockwise. θ  is the heel angle measured from the wedge 
symmetry axis to the y  axis. As the wedge rotates, θ  varies 
with time. 0γ  is the angle between the symmetry axis and 
the surface of the wedge. The water density ρ , the initial 
vertical velocity 0V , and the distance l  between the wedge’s 
tip and centre of gravity are used for non-dimensionalization. 
In this case, the Froude number is defined as 0 /rF V gl= , 
in which g  is the acceleration of gravity. 

The deadrise angles 1γ  and 2γ  on the right and left 
hand sides, respectively, can be obtained from the following 
relationship 

1 0 2 0,
2 2
π πγ θ γ γ θ γ= + − = − − (1)

During the water entry, the vertical distance s , the horizontal 
distance h , and the heel angle θ  of the travelling wedge can 
be obtained through 

 0
0 0 0

( ) ( ) ( ) ( ) ( ) ( )
t t t

s t V d h t U d t dτ τ τ τ θ θ τ τ= = = + Ω∫ ∫ ∫，，  (2)

where 0θ  is the initial heel angle at the moment of water 
entry. The displacement of wedge tip in the vertical direction 
can be written as 

0( ) cos cosPs s t       (3)

and in the horizontal direction it becomes 

0( ) sin sinPh h t     (4)

GOVER NING EQUATION AND BOU NDARY 
CONDITIONS

When the fluid is assumed incompressible and inviscid 
and the flow is irrotational, the velocity potential φ  can be 
introduced. This potential satisfies the Laplace equation in 
the fluid domain

 2 =0φ∇ (5) 

and its gradient is equal to the fluid velocity. In the body-fixed 
system, the dynamic and kinematic boundary conditions 
on the instantaneous free surface FS  can be written in 
Lagrangian form as

 0 0
1 1 ( cos cos )
2 r

D y s A
Dt F
φ φ φ θ θ= ∇ ⋅∇ − − + − +  (6)
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 cos , sinDx DyU V
Dt x Dt y

φ φθ θ∂ ∂
= − −Ω = + +Ω
∂ ∂

(7) 

where 0A  is the wave elevation at the moment of water entry. 
On the wetted surface 0S  of the body the impermeable 
boundary condition takes the form 

 ( ) ( )x yU Y n V X n
n
φ∂
= −Ω + − +Ω

∂
 (8)

where ( , )x yn n=n  is the normal vector to the body surface 
pointing out of the fluid domain, and ( , )X Y=X  is the 
position vector relative to the centre of gravity or the rotating 
centre G . The negative sign before V  is due to the fact that 
V  is positive when it is downwards. At a sufficiently large 
distance from the body, the disturbance is assumed to have 
diminished, and there is only the incident potential. The 
velocity of fluid tends to that due to the undisturbed potential 

Iφ , and the far field boundary condition can therefore be 
written as 

 Iφ φ∇ →∇  (9)

At 0=t , the initial condition can be expressed as 

 
I I I( , 0) ( , 0), ( , , 0) ( , , 0)y x t x t x t x tη φ η φ η= = = = = = (10) 

At the initial stage of water entry, there is only a tiny 
part of the body immersed in the wave, and in order to 
maintain sufficient numerical accuracy, extremely small 
elements are needed. If a fixed fluid domain is used in the 
physical coordinate system , the choice of the truncated 
boundary should take into account the disturbed area at later 
stages. All this would lead to a large number of elements at 
the initial stage. To solve this problem, a stretched system 
O αβ−  proposed by Wu et al. [9] can be used here. The 
distance s  travelled by the wedge in the vertical direction 
is set as the stretched ratio between the physical system and 
the stretched system. At the initial stage we can write 

 D I( , , ) ( , , ) ( , , ), / , /x y t s t x y t x s y sφ ϕ α β φ α β= + = = 11) 

in which Dϕ  is the velocity potential due to the disturbance 
in the stretched system. The body surface boundary condition 
can then be written as 

 D I( ) ( )U Y n V X n
n nα β
ϕ φ∂ ∂

= −Ω + − +Ω −
∂ ∂

 (12)

where D 0ϕ∇ →  at a sufficiently large distance from the 
body. It should be pointed out that the normal derivatives 
of Dϕ  and Iφ  in Eq. (12) are taken from the stretched and 

Cartesian coordinate systems respectively. At 0t = , D 0ϕ =  
on the free surface, or Iφ φ= . Substituting Eq. (11) into Eqs. 
(6) and (7), we have

2 2D I
D I D I 0 0

( ) 1 1[( ) ( ) ] ( cos cos )
2 x y

r

D s s s A
Dt Fα β
ϕ φ ϕ φ ϕ φ β θ θ+

= + + + − − + − +   (13)

 D I D I
( ) ( )sin , cosy x

D s D sV U
Dt Dtβ α
β αφ ϕ θ φ ϕ θ= + + +Ω = + − −Ω  (14)

The disturbance potential Dϕ  can be updated together 
with the free surface. In the subsequent time steps we can 
define ( , , ) ( , , )x y t s tφ ϕ α β= . The body surface boundary 
condition for ϕ  retains the same form as that in Eq. (8)

 ( ) ( )U Y n V X n
n α β
ϕ ω ω∂
= − + − +

∂
(15) 

The free surface boundary conditions can be written as 

2 2
0 0

( ) 1 1( ) ( cos cos )
2 r

D s s s A
Dt Fα β
ϕ ϕ ϕ β θ θ= + − − + − +   (16)

(17) 
( ) ( )sin , cosD s D sV U
Dt Dtβ α
β αϕ θ ϕ θ= + +Ω = − −Ω  

It should be noted that the reason for using Eq. (11) at 
0=t  is to avoid ϕ  which tends to infinity as sϕ  equals the 

incident potential on the free surface and at a large distance 
from the body at 0=t . 

THE BOUNDARY ELEMENT METHOD

Through Green’s identity, the Laplace equation in the fluid 
domain can be converted into the integral equation over the 
whole boundary

pq
pq q

q q

ln( )( ) ( ) (ln ( ) )
rqA p p r q dl

n n
φφ φ

∂∂
= −

∂ ∂∫  (18) 

where )( pA  is the solid angle of boundaries at point p , 
and  is the distance from the field point p  to the source 
point q . Straight line elements with variables assumed to 
vary linearly within each element are distributed along the 
boundary. To perform the integration over each element in 
Eq. (18), we define 

 
2 2

1 1
( ) , ( )i i i i

i i
h u h uα β φ φ

= =

= + = ⋅ = ⋅∑ ∑r i j r (19) 

in which r  is the position vector from the origin, with i  
and j  being the unit vectors in the α  and β  directions, 
respectively. The shape functions are chosen as 
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 1 2( ) 1 , ( )h u u h u u= − = (20) 

where 0 1u≤ ≤ . Substituting Eqs. (20) and (21) into (19), 
we have

e e2 21 1 pq
pq0 0

1 1 1 1

( ) ln
( ) ( ) ln ( ) ( ) ( )

n

iN N
ji i i

j
j i j i

q r
A p p r h u ldu h u q ldu

n
φ

φ φ
= = = =

∂ ∂
= −

∂ ∂∑ ∑ ∑ ∑∫ ∫ (21) 

where eN  is the total number of elements. The integrations 
within each element can be obtained through the analytical 
solution given by Lu, He & Wu [13]. 

THE PRESSURE

Based on the Bernoulli equation, the pressure can be 
written as

0 0
1 1 ( cos cos )
2t

r

p y s A
F

φ φ φ θ θ
 

= − + ∇ ⋅∇ + − + − + 
 

 (22) 

At each time step, the velocity potential φ  can be solved 
through the numerical scheme given in the previous section, 
from which its gradient φ∇  can be obtained. However, the 
temporal derivative of potential tφ  is still unknown explicitly. 
To deal with this problem, the auxiliary function method is 
adopted [14, 15]. Notice that the potential tφ  also satisfies the 
Laplace function in the fluid domain. The normal derivative 
of tφ  on the body surface can be written as [16]

 � � � �t

n n n
� � �� �� �
� � � � � � � � ��� �� �� � �
U Ω X n U Ω U���� � ���U Ω �� �Ω X��+ X   (23)

where U V= +U i j ,  with = ×k i j , and the dot 
means the temporal derivative. Particular attention should 
be paid to accelerations in Eq. (22), which are unknown 
before the force is found. To decouple their nonlinear mutual 
dependence, we define

 � �0 1 2 3t sU sV s� � � � � � �� � � � � � �� � � � ��U Ω U1 2 3 �1 2 31 2 �� � � �� �1 2 31 2U sV ssVsV1 21 21 2 X   (24)

Here ( 0, 3)i iχ =   satisfy the Laplace equation. The body 
surface boundary conditions for the auxiliary functions can 
be written as

0 0
n
χ∂

=
∂

  (25)

 
∂
∂

(26) 

 2 n
n β
χ∂

=
∂

(27) 

 3 ( )Xn Yn
n β α
χ∂

= −
∂

(28) 

Based on the Bernoulli equation, and considering zero 
pressure on the free surface, we have 

 

2
0 0 02

1 1 ( cos cos )
2

( ) ( )

s s A
Fr

U V X V Y Uα β β α

χ ϕ β θ θ

ϕ ϕ ϕ ϕ

 = − ∇ + − + − +  
 + − −Ω⋅ ⋅ − − − ⋅ − 

(29) 

 ( 1,2,3) 0i iχ = = (30) 

In the far field, the disturbance potential is assumed to 
have sufficiently diminished, and there is only the incident 
potential. Consequently, the boundary conditions can be 
written as 

 

I0 I I

II I
Iy Ix

( ) ( )
n

= ( ) ( ) ( ) ( )
n

yt x
y x

yt x
x y

U V X V Y U
n n n n

U Y V X n V n U
n n

φχ φ φ
φ φ

φφ φ
φ φ

∂∂ ∂ ∂ ∂  = + − −Ω⋅ ⋅ − − − ⋅ − ∂ ∂ ∂ ∂ ∂
∂∂ ∂  + − Ω − − Ω −Ω⋅ ⋅ − − − ⋅ − ∂ ∂ ∂

 (31)

( 1,2,3) 0i i
n
χ∂

= =
∂

  (32)

The above auxiliary functions can also be solved through 
the boundary element method discussed in Sec. 2.3. Once 
they are all found, tφ  can be obtained and used in Eq. (22) 
for pressure calculation.

COUPLED MOTION

The Newton’s equation of motion for a body in waves can 
be written as

 [ ][ ] [ ] [ ]e= +M A F F  (33)

where

(34) [ ] [ ] [ ] [ ]
1

2

3

0 0 0
0 0 , , ,
0 0 0

e

m U F
m V F mg

I F

      
      = = − = = −      
      Ω     

M A F F







 

In Eq. (34), m  is the mass of the two dimensional wedge 
of unit length, and I  denotes the rotational inertia about the 
centre of gravity. The matrix [ ]F  is the hydrodynamic force, 
which can be obtained through integrating the pressure from 
Eq. (22) along the wetted surface of the body. Thus we have

0

i i
S

F s pn dS= ⋅ ∫  (35)
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where 1 2 3( , , ) ( , , )n n n n n Xn Ynα β β α= − . Based on the definition 
of the auxiliary functions in Eq. (24), the hydrodynamic 
force can be divided into two parts: one part containing the 
terms associated with unknown accelerations, and the other 
part containing the rest of the hydrodynamic force which 
has been solved through the numerical scheme given in the 
previous section. In this case, the unknown accelerations 
can be obtained through solving the uncoupled equation of 
motion with unknown terms moved to the left hand side of 
Eq. (33). Thus we have

 [ ][ ] [ ] [ ]e+ = +M C A Q F  (36)

where [ ]C  is the matrix with the coefficients

 

0

2
ij i j

S

C s n dSχ= ⋅ ∫  (37)

and the coefficients of matrix [ ]Q  can be obtained as 

0

0 02

{ ( ) ( ) ( )

1 1 ( cos cos )}
2

i
S

i

Q s U V X V Y U

s s A n dS
Fr

α β β αχ ϕ ϕ ϕ ϕ

ϕ ϕ β θ θ

 = − ⋅ − − +Ω⋅ ⋅ − − − ⋅ − 

+ ∇ ⋅∇ + − + − + ⋅

∫
  (38)

NUMERICAL RESULTS AND DISCUSSION 

The wave environment in the above procedure can be 
changed according to the specific problem. In the reported 
case, the 5th order Stokes wave for deep water is adopted. 
Based on the manner described before for Eq. (1), the non-
dimensional potential and wave elevation can be written 
as [17]

 
0 0 0

0 0

23 3 4 4
I 3

35 5 5 5

1 1 1 1( sin sin sin 2
2 2

37 1sin sin3 )
24 12

ky ky ky

r

ky ky

kAe k A e k A e
F k

k A e k A e

φ θ θ θ

θ θ

= − +

− +

 (39)

 

2 2 4 4 3 3
I

2 2 4 4 3 3 4 4

3 422 1 1[(1 )cos ( )cos2
8 384 2 3

3 297 1 125( )cos3 cos4 cos5 ]
8 384 3 384

A k A k A kA k A

k A k A k A k A

η ϑ ϑ

ϑ ϑ ϑ

= − − + +

+ + + +
 (40)

where
 0 0kx tϑ ω ϑ= − +  (41)

 2 2 4 41 1(1 )
2 8r

k k A k A
F

ω = + +  (42)

and 0ϑ , ω , and k  are, respectively, the initial phase, wave 
circular frequency, and wave number. It should be noted 
that A  is not the wave amplitude but / 2H , in which H  
is the wave height. 

COMPARISON 

The case of a symmetric wedge entering into calm water 
vertically through free fall motion is used for comparison. 
Fig. 2 shows the time-histories of accelerations obtained 
numerically from the present procedure and by Wu (2004) and 
Xu et al. (2010), as well as the experimental results recorded by 
Wu (2004). The rotational inertia I  is set equal to 245kgm , 
the distance between the wedge tip and the centre of gravity is 

0.25l = , and the included angle is 0 / 4γ π= . The deadrise 
angles 1γ  and 2γ  of the symmetric wedge at 0t =  are both 

/ 4π , and the initial heel angle is 0 0θ = . This angle will 
not change for the case with free fall motion. The acceleration 
of gravity with frictional resistance deducted is denoted as 

eg . It can be seen from Fig. 2 that the vertical accelerations 
obtained from the present procedure are very close to those 
obtained by Wu (2004) and Xu et al. (2010), and this implies 
that the present numerical methodology is accurate. In the 
next cases, unless specified otherwise, 0γ  and 0θ  are set 
equal to / 4π  and 0, respectively. 
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Fig. 2. Time-histories of acceleration for symmetric wedge entering 
water through free fall motion: (a) 28.0062ge ms−= , 113.522bM kgm−= , 

1
0 0.95623V ms−= . (b) 28.9716ge ms−= , 130.188bM kgm−= , 1

0 1.69673V ms−= .

WATER ENTRY OF THE WEDGE INTO THE WAVE 
AT DIFFERENT FROUDE NUMBERS 

Based on the dynamic boundary condition given by Eq. 
(6), it can be found that when the Froude number is larger, 
the gravity effect is less prominent. The same conclusion can 
also be made from the pressure equation (22). A limiting 
case is when the Froude number tends to infinity, and in this 
case the gravity effect is negligible. If the Froude number 
is larger, the disturbance potential is also larger, based on 
Eq. (11). It can also be found that the importance of the wave 
potential in the total potential becomes weaker, as proved 
by Eq. (39). To study the effect of the Froude number, the 
wedge with the mass 1 /kg m  and rotational inertia 245kgm  
is released to hit the wave crest freely at different initial 
velocities: 3m/s, 6m/s and 9m/s. The wave height and the 
wave length are respectively set equal to 0.8m and 6m. Based 
on the nondimensionalized procedure applied to Eq. (1), 
the corresponding Froude numbers are 1.92, 3.83, and 5.75. 
At 0t = , we have 0 0θ =  and 0 / 4γ π= . Fig. 3 gives the 
free surface profiles and pressure distributions when the 
wedge has travelled the vertical distance 0.4s = . Based on 
the discussion by Sun et al. [12], when the water is not calm 
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and the wedge enters into the wave vertically, the results are 
not symmetric above the wedge axis due to the effect of the 
horizontal wave velocity component. However, based on 
the former discussion, it has been found that increasing the 
Froude number would make the wave effect weaker. Thus 
in Fig. 3, the free surface profiles and pressure distributions 
on the two hand sides of the wedge become more and more 
symmetric as the Froude number increases. A limiting case 
is when the Froude number tends to infinity. In this case the 
wave effect is negligible and the results on the two hand sides 
become completely symmetric. 

Figs. 4-6 give the time-histories of acceleration, velocity 
and displacement for the wedge entering into the wave in three 
degrees of freedom with different Froude numbers. As shown 
in Fig. 4(a), when the Froude number is smaller, the absolute 
value of vertical deceleration V  in non-dimensional sense 
is also smaller. This coincides with the results in Fig. 5(a), in 
which the absolute value of vertical velocity decreases more 
slowly with the decreasing Froude number. Thus in Fig. 6(a), 
the vertical distance travelled by the wedge with a smaller 
Froude number is larger due to smaller deceleration and larger 
velocity in vertical direction. This phenomenon seems to be 
in contradiction with the general idea that a body moves 
faster when the initial velocity or Froude number is larger. 
In fact, during the short interval of impact action, the body 
with a larger Froude number also suffers a larger impact 
pressure, which prevents the wedge from going down quickly. 
This can also be explained through the existence of a wave. 
The wedge with a smaller Froude number suffers a more 
unbalanced pressure distribution, see Fig. 3(b). Consequently, 
the hydrodynamic force in the vertical direction becomes 
smaller, and this directly leads to a smaller deceleration in 
vertical direction and larger accelerations in other directions. 
Thus, the accelerations in Fig. 4(b) and (c) with smaller Froude 
numbers are noticeably larger. Correspondingly, the velocities 
and displacements in Figs. 5 and 6 (b) and (c) increase as the 
Froude number decreases. 
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Fig. 3. Free surface profiles (a) and pressure distributions (b) for wedge 
entering into wave at different Froude numbers ( 0.4s = ).
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Fig. 4. Time-histories of (a) vertical, (b) horizontal, and (c) rotational 
acceleration for wedge entering into wave at different Froude numbers
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Fig. 5. Time-histories of (a) vertical, (b) horizontal, and (c) rotational velocity 
for wedge entering into wave at different Froude numbers
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Fig. 6. Time-histories of (a) vertical, (b) horizontal, and (c) rotational 
displacement for wedge entering into wave at different Froude numbers

3.3. Water entry of the wedge into different waves

As can be seen from Eq. (39), the flow motion due to 
incident wave is proportional to r/A k F . It is evident that 
when r/ 1A k F << , the wave effect can be neglected. If 

r/A k F  is not a small number and the Froude number rF  
is fixed, the wave effect depends on the wave height 2H A=  
and the wave number k . Two limiting cases are 0H =  and 

0k = , both corresponding to calm water conditions. 
Fig. 7 gives the free surface profiles and pressure 

distributions for the wedge hitting the wave crests with 
different heights, at a fixed vertical travelled distance 0.4s = . 
As H  increases, the wave slope becomes increasingly steeper 
and the pressure distributions on the two hand sides become 
more and more unbalanced. The reason for this is that the 
horizonal velocity of the wave increases with H and the 
difference between the fluid velocity distributions on the 
two hand sides becomes more and more prominent. Fig. 8 
gives the accelerations for the wedge hitting the wave crests 
with different heights. It is evident that as H  increases, the 
absolute value of vertical acceleration decreases, while the 
horizontal and rotational accelerations increase noticeably. 
This can be explained through the pressure distribution in 
Fig. 7(b). The wave effect becomes increasingly prominent as 
H  increases. As a result, the pressure on the seaward side 
becomes larger while that on the other side becomes smaller. 
This directly leads to the increase of the hydrodynamic 
force in the vertical direction and its decrease in other 
directions. As H  decreases, the pressures on the two hand 
sides become gradually more symmetric, the hydrodynamic 
force in the vertical direction increases while decreasing in 
other directions. The limiting case is 0H → , in which the 
wave effect is negligible and the hydrodynamic forces and 
accelerations in the horizontal and rotational directions also 
decrease to zero.
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Fig. 7. Free surface profiles (a) and pressure distributions (b) for wedge 
entering into waves with different wave heights ( 0.4s = )
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Fig. 8. Time-histories of (a) vertical, (b) horizontal, and (c) rotational 
acceleration for wedge entering into waves with different wave heights

Fig. 9 gives the free surface profiles and pressure 
distributions for the wedge hitting the wave crests with 
different wave numbers k , at the vertical distance travelled by 
the wedge 0.4s = . As k  decreases, the wave effect becomes 
less prominent and therefore the pressure distributions on 
the two hand sides become more and more symmetric. In 
fact, estimating the wave effect only through k  and h  is not 
precise, as the effective deadrise angle between the wave and 
the wedge surface, as well as the wave velocity distributions in 
different phases are also very important for impact pressure 
[12]. In such a case, the pressure distribution in Fig. 9 shows 
some peculiar features, for example, the largest pressure 
is at 0.17k = , and this is because smaller k  provides 
a smaller deadrise angle. Fig. 10 gives the accelerations for 
the wedge hitting the wave crests with different numbers 
k . It is evident that as k  increases, the absolute value of 
vertical acceleration decreases. This is attributed to the smaller 
pressure in Fig. 9(b), and the deeper reason for this is that 
a larger k  corresponds to larger deadrise angle on the two 
hand sides, see Fig. 9(a). As the wave number k  increases, 
the horizontal acceleration in Fig. 10(b) decreases while the 
rotational acceleration in Fig. 10(c) increases. It should be 
noted that after a short time interval of slamming, the motion 
of the wedge is fully driven by the wave and its accelerations 
mainly depend on the velocity distribution and the slope 
of the wave in the wave field.
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Fig. 9. Free surface profiles (a) and pressure distributions (b) for wedge 
entering into waves with different wave numbers ( 0.4s = )
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Fig. 10. Time-histories of (a) vertical, (b) horizontal, and (c) rotational 
acceleration for wedge entering into waves with different wave numbers

CONCLUSIONS

The problem of water entry of a wedge into waves in three 
degrees of freedom has been investigated using the fully 
nonlinear boundary element method based on the velocity 
potential theory. Extensive simulations have been undertaken 
for a wedge entering into the Stokes wave with a given initial 
vertical velocity, from which the following conclusions can 
be drawn:

(1) Except the calm water conditions, in all other cases 
the modes of wedge motion in the wave field vary greatly 
depending on the Froude number. As the Froude number 
increases, the absolute value of vertical acceleration increases, 
while the horizontal and rotational accelerations decrease. 
The reason for this is that the velocity distribution in the fluid 
field is noticeably changed by the wave. In this unsteady flow 
field, the Froude number is larger and the wave effect is less 
prominent. Thus we can conclude that it is not rational to 
neglect the wave effect absolutely in real ocean engineering 
problems, unless the Froude number is sufficiently large. In 
other words, calm water slamming is only a limiting case of 
the wave entry problem. 

(2) When a wedge hits the peak of the Stokes wave with 
changing height at a given initial Froude number, a larger 
wave height will give a larger horizontal velocity in the fluid 
field, which will increase the pressure on the seaward side 
of the wedge and decrease on the back side. The wedge will 
surfer a more unbalanced pressure distribution, and this 
will lead to smaller acceleration in the vertical direction and 
larger in other directions.

(3) The effect of wave number is more complex. This is 
mainly due to the fact that the fluid field is affected by many 
other factors when the wave number k  changes, for instance, 
the relative location and effective deadrise angle between the 
wedge and the wave.

(4) The present work analyses the impact between 
a wedge and water wave in a broad context, including the 
coupled effect. It has many practical implications, such as 
ship advancing in rough seas, wave interaction with coastal 
structures, and hostile wave hitting an offshore platform. 
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