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ABSTRACT

The health condition of rolling bearing can directly influence to the efficiency and lifecycle of rotating machinery, thus 
monitoring and diagnosing the faults of rolling bearing is of great importance. Unfortunately, vibration signals of rolling 
bearing are usually overwhelmed by external noise, so the fault frequencies of rolling bearing cannot be readily obtained. 
In this paper, an improved feature extraction method called IMFs_PE, which combines the multivariate empirical 
mode decomposition with the permutation entropy, is proposed to extract fault frequencies from the noisy bearing 
vibration signals. First, the raw bearing vibration signals are filtered by an optimal band-pass filter determined by SK 
to remove the irrelative noise which is not in the same frequency band of fault frequencies. Then the filtered signals 
are processed by the IMFs_PE to get rid of the relative noise which is in the same frequency band of fault frequencies. 
Finally, a frequency domain condition indicator FFR(Fault Frequency Ratio), which measures the magnitude of fault 
frequencies in frequency domain, is calculated to compare the effectiveness of the feature extraction methods. The feature 
extraction method proposed in this paper has advantages of removing both irrelative noise and relative noise over 
other feature extraction methods. The effectiveness of the proposed method is validated by simulated and experimental 
bearing signals. And the results are shown that the proposed method outperforms other state of the art algorithms 
with regards to fault feature extraction of rolling bearing.
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INTRODUCTION

Rolling bearing is widely used in electric power industry, 
petrochemical industry, military industry and so on. However, 
rolling bearing is vulnerable and frequently falls out of service 
for various reasons. Bearing failures may further result in 
fatal breakdowns or even huge amount of economic losses 
and casualties. According to the bearing statistical data, about 
70% of the mechanical faults are caused by the vibration faults, 
whereas among the vibration faults, 30% are due to the rolling 
bearing’s failure [1]. Therefore, it is imperative to monitor the 
work condition of the rolling bearing. Since vibration signal 
contains much information about machine health condition, 
fault diagnosis methods based on the vibration signal analysis 

are really prevalent in current literature. Recently, many 
signal processing methods to extract features from signals 
were proposed [2-5].

Rolling bearing is composed of rollers, outer races, inner 
races, as well as cages. The components of rolling bearing 
interact with each other to generate complex vibration signals. 
When the surface of one of these components develops 
a localized fault, the impacts, generated by other parts of 
rolling bearing periodically striking the damage spot, will 
excite bearing fault frequency. And the fault frequency will be 
further modulated by mechanical resonance of the whole 
mechanic structure [6]. Thus the measured signals from 
rolling bearing are usually have the characteristics of non-
stationary and non-linear. Moreover, in the early stage 
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of rolling bearing’s failure, the information of defects in the 
measured vibration signals is weak and is usually concealed 
by large background noise and other structural vibrations. 
Hence, it is a big challenge to extract the fault frequencies 
from the raw bearing vibration signals [7].

The fault vibration signals of rolling bearing are usually in 
the form of amplitude modulation or frequency modulation. 
So lots of signal analysis methods which are based on either 
frequency domain or time-frequency domain have been 
proposed to extract fault frequencies from the measured 
signals. In frequency domain, the spectrum of the rolling 
bearing fault vibration signals is composed of fault frequencies 
and other mechanical noise frequencies. On this basis, 
the fault frequencies can be obtained from the spectrum 
of rolling bearing vibration signal. Then, Envelope analysis 
method, which is one of spectrum analysis methods was 
presented by McFadden et al [8] to solve the problem of signal 
modulation in time domain. However, envelope analysis 
method is decreasingly effective when the signal-to-noise 
ratio of the rolling bearing vibration signals decreases. To 
tackle this problems, some optimal frequency-band selection 
methods based on wavelet and wavelet package [9] have been 
proposed to complete the function of the band-pass filter 
and acquire the signals whose frequencies are among the 
resonance frequency of fault frequencies. However, in order 
to obtain good decomposition results, the mother wavelet 
needs to be chosen carefully to ensure that the content of 
daughter wavelets is similar to the analysed signals. To tackle 
the disadvantage of wavelet and wavelet package methods, the 
empirical mode decomposition(EMD) was emerged. 

The ensemble empirical mode decomposition(EEMD) was 
as an improved algorithm of EMD and was put forward by Wu 
and Huang in 2009 [10]. Many signal analysis methods based 
on EMD or EEMD [11] have been proposed to decompose 
the modulation signals into a number of sub-signals, which 
are also named as intrinsic mode functions(IMFs). However, 
these methods mentioned previously only decompose 
the complex signals into a finite number of sub-signals, but 
they fail to identify the specific sub-signals that contain most 
of the defect information, especially when the original signals 
are overwhelmed by large noise.

Spectral kurtosis(SK) is a statistical tool to quantify the 
presence of transient peak and locate the transients in the 
frequency domain [12]. The SK algorithm can determine the 
central frequency and frequency band where the bearing 
fault frequencies reside. Hence, an optimal band-pass filter 
can be designed based on the SK algorithm to recover the 
higher signal-to-noise ratio bearing fault signal from the raw 
bearing fault signal. Whereas the main drawback of the SK 
algorithm is that, only the noise which is out of the resonance 
frequency band of fault frequencies can be removed. 

Recently, permutation entropy(PE) has been proposed by 
Bandt and Pompe in 2002 [13],which serves as a statistical 
indicator of the time series’ complexity. Since PE is sensitive 
to the signal mutation and can characterize the small intrinsic 
dynamic changes of signal, it is applied to assist extracting the 
faults of rolling bearing effectively [14] used the PE as a tool 

in status characterization of rolling bearing. They found that 
PE could detect and amplify the dynamic change of rolling 
bearing vibration signals. 

In this paper, the SK algorithm is firstly applied to obtain 
the SOI signal, which contain mainly fault characteristics, 
and the residual signal which mainly contains noise. Then, 
the improved IMFs_PE method is used as a tool to recover 
the bearing fault signal of higher signal-to-noise ratio from the 
SOI signal. By using MEMD , a series of IMFs are obtained, 
which include noise, irrelevant components and the real 
bearing fault signal. Then, the reconstructed bearing fault 
signal is reconstructed from the IMFs through using the PE 
value as the criterion. Finally, obtain the fault frequencies 
by calculating the envelope spectrum of the reconstructed 
bearing fault signal, and verify the performance of the 
proposed method in this paper by comparing the FFR values 
of raw bearing signal and reconstructed bearing fault signal.

The structure of this paper is organized as follows: 
Section 1 is the introduction, it is mainly introduced the 
research background of this paper. In section 2, the theory 
of SK, MEMD and PE algorithms are introduced firstly. 
Furthermore, the procedure of the proposed feature extraction 
method based on MEMD and PE is described in detail. In 
section 3, the proposed method is validated by the simulation 
bearing signals and experimental bearing signals firstly. Then 
make comparisons of the proposed method in this paper 
with some other feature extraction methods to demonstrate 
the effectiveness of the proposed method. In section4, the 
conclusion and discussion are drawn.

METHOD

Kurtosis is sensitive to the singular signals and is often 
used to detect the abnormal responses in the rotating systems. 
However, kurtosis is a global statistical indicator and sensitive 
to the noise. To tackle the drawback of kurtosis, spectral 
kurtosis (SK) was proposed by Dwyer, which is a spectral 
descriptor. SK is used as a statistic tool for processing the non-
stationary signal, it can not only detect the non-stationary 
components in the signals, but also locate the non-stationary 
components in the frequency domain. The principle of SK 
method is to calculate the kurtosis value of each frequency 
line and then find out the frequency band where the non-
stationary characteristics exist, and the definition is explained 
below:

(1) Taking account of the Wold-Cramer decomposition 
of conditionally non-stationary process, any a non-stationary 
signal ( )x t  can be expressed as ( )Y t  in frequency domain.

 2( ) ( , ) ( )j ftY t e H t f dX fπ+∞

−∞
= ∫  (1)

When ( , )H t f  is the time-varying transfer function of 
the system, and it is also a complex envelope. ( )X f  is the 
spectrum of the ( )x t .
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(2) Since conditionally non-stationary process has 
the statistical property of time-independent, 2n-order 
instantaneous variable 2 ( , )nYS t f  is defined to calculate the 
energy of the complex envelope at time t  and frequency f :

 
{ }2

2

2
2

( , ) ( , ) |

( , )

n
nY

n
nX

S t f E H t f df

H t f S

ω

= ⋅



 (2)

On the condition that the complex envelope ( , )H t f  
has the properties of stationarity and ergodicity, 2n-order 
instantaneous variable 2 ( , )nYS t f  can be also defined as:
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Where 
t

•  is the time-averaged operator.
(3) According to the definition above, the fourth-order 

spectral cumulant of conditionally non-stationary process 
4 ( )YC f  is defined as:

 2
4 4 2( ) ( ) 2 ( )Y Y YC f S f S f= −  (4)

(4) Finally, SK is generated by normalizing the fourth-
order cumulant 4 ( )YC f , namely the SK value is used to 
measure the peakiness of the probability density function 
of the conditionally non-stationary process at frequency f :

 4 4
2 2
2 2

( ) ( )( ) 2
( ) ( )

Y Y
Y

Y Y

C f S fK f
S f S f

= −  (5)

Antoni gave the further study of applying the SK to the 
vibratory surveillance and diagnostics of rotating machines 
after he gave the formal definition of SK in 2006. When a fault 
occurs in the rotating machine, the vibration signal of rotating 
machine usually has a periodic impulse-like repetitive nature. 
Since the SK algorithm has advantage of having a robust way 
of detecting and locating the periodic impulse-like signals 
even in the presence of large noise. The SK algorithm is used 
as a defect indicator to extract bearing fault signal out of the 
raw bearing signal overwhelming by large noise in this paper.

Empirical mode decomposition(EMD) is a fully data-
driven method for multistate analysis of non-linear and non-
stationary signals, so it is widely applied for signal analysis 
in time-frequency domain. The multivariate empirical mode 
decomposition (MEMD) algorithm is the extension of EMD 
for multivariate data, which was proposed by Rahman and 
Mandaic. MEMD method has the advantage of overcoming 
the mode alignment problem experienced with EMD by 
the joint analysis of multiple oscillatory components within 
a higher dimensional signal.

The detailed procedure of MEMD algorithm is summarized 
as follows:

(1) The input signal is { } { }1 21
( ) ( ), ( ), , ( )T

nt
x t x t x t x t

=
=  , and 

{ }1 2, , ,k k k k
nd d d dθ = 

is projected vector according to the angle 
vector { }1 2 1, , ,k k k k

nθ θ θ θ −=  on an ( 1)n −  sphere.
(2) According to the Hamersley sequence[4], an appropriate 

set of sampling points on ( 1)n −  sphere is obtained.
(3) Calculate a projection { }

1
( )k

T

t
p tθ

=
, which is the projection 

of the input signal { } 1
( ) T

t
x t

=
along the direction vector kdθ , for 

all k , giving { }
1
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K

k
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=
as the set of projections.

(4) Find all maxima of the set of projected signals { }
1

( )k
K

k
p tθ
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at time instants { }k
it
θ . Then interpolate the sequences  

, ( )k k
i it v tθ θ    to obtain multivariate envelope curves { }
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Finally, for a set of K direction vectors, calculate the mean 
( )m t of the envelope curves as 

1
( ) ( )1 k

K

k
m t e tK θ

=
= ∑

(5) Extract the detail signal ( )d t  by using ( ) ( ) ( )d t x t m t= − . 
If the detail signal ( )d t  fulfills the stop criterion for a multivariate 
IMF, apply the above (2) procedure to ( ) ( )x t d t− , otherwise 
apply it to ( )d t .

In this paper, MEMD is used as a tool for decomposing 
the filtered bearing vibration signal by SK through adding 
extra channels containing independent white noise. By using 
MEMD, a series of IMFs are obtained. 

Permutation entropy (PE) is a statistical method for 
measuring the complexity and detecting the dynamic changes 
of one dimensional time series, which was first proposed 
by Bandt and Pompe in 2002. PE has the advantage of simple 
and fast calculation. Furthermore, Yan et al had applied PE for 
status characterization of rotating machine and demonstrated 
that PE had the advantage of effectively characterizing 
the working status of rotating machine. 

PE was calculated by the comparison of neighboring values 
and its definition is given as follows.

(1) For a given time series{ }( ), 1, 2,3, ,x i i N= 
, according 

to the time delay τ  and embedding dimension m , the m −
dimensional reconstructed matrix mY is defined as Eq. (6):
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  (6)

(2) Rearrange the reconstructed matrix mY , each row in 
matrix mY  ( )( ) ( ) ( ) ( ( 1) )Y i x i x i x i mτ τ= + + −  is 
rearranged in an increasing order as in Eq. (7).
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 1 2( ( 1) ) ( ( 1) )
( ( 1) )m

x i j x i j
x i j

τ τ
τ

+ − ≤ + −
≤ ≤ + −

 (7)

Where 1 2, . , mj j j  refer to the index of column in 
matrix ( )Y i . If there are two same values in ( )Y i , for 
example, if 1 2( ( 1) ) ( ( 1) )x i j x i jτ τ+ − = + − , then the 
order can be rearranged by the value of 1j  and 2j . That 
is to say, when 1j  is small than 2j , it can be rearranged as

1 2( ( 1) ) ( ( 1) )x i j x i jτ τ+ − ≤ + − .
(3) After rearranging, each row ( )Y j of the matrix mY can 

be uniquely mapped into an ordinal permutation as Eq. (8).

 ( )1, 2( ) , , mS l j j j= 

 (8)

Where 1, 2, ,l K=  , and !K m≤ . 
(4) It is clearly that there is !m permutations for m

dimensional delay vectors at most. And each ( )S l  represents 
a  permutation pattern. Assume that the probability 
distribution of each permutation pattern can be calculated 
with Eq. (9)

 
{ }( )

l
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P

K
=  (9)

Where 1,2, , , !l K K m= ≤ .
(5) Finally the normalized permutation entropy is defined 

as Eq. (10):
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  (10)

Thus pH gives a complexity measure of a time series. The 
smaller the value of pH , the more regular the time series is. 
Bandt and Pompe recommend that the value of m should 
be in the scope 3, ,7m =  . 

As known, fault information of rolling bearings is mostly 
reflected by singular points of abrupt changing signals and is 
usually non-stationary and non-linear. PE is effective to detect 
the dynamic changes of non-stationary and non-linear signals 
in complex systems . Moreover, the PE is insensitive to the 
noise. In this paper, the PE is used as the criterion to select the 
corresponding IMFs of bearing fault signal to reconstruct the 
high signal-to-noise ratio bearing fault signal. The procedure 
of calculating PE is described as follows: First, the raw data 
is partitioned into blocks of data subsets with length w , 
which may overlap each other or not. Then the embedding 
dimension m and the delay timeτ are determined. Finally, 
the permutation entropy pH is calculated for each data subset, 
so its change with time varying is obtained. In this paper, the 
parameters are chosen as: 1024, 5, 1w m= = = . For more 
details about the parameter selection, refer to Yan and Zheng.

In the process of extracting the fault frequencies of rolling 
bearing vibration signals, there are two big challenges that 

we have to face. 1) the irrelevant interference which is not in 
the same frequency band of fault frequencies; 2) the relevant 
interference which is in the similar frequency band of fault 
frequencies. As for the irrelevant interference, since it has 
the property of the irrelevant interference having different 
frequency band range with the fault frequencies in frequency 
domain. Some time-frequency signal analysis methods have 
successfully removed the irrelevant interferences, such as 
SK, ,wavelet package transfer, EEMD and so on. And it has 
appeared large amount of excellent research achievements. 
However, there fewer research on solving the problem of 
getting rid of the relevant interferences except for blind 
source separation algorithm. On this basis, the IMFs_PE 
method in this paper is mainly aimed at removing the relevant 
interference. The improved feature extraction method based 
on the MEMD and PE in this paper take both irrelevant and 
relevant interferences into account. And it recover the bearing 
fault signal from the raw noisy bearing signal very well.

Before introducing the improved feature extraction 
method clearly, in order to validate the effectiveness of the 
proposed feature extraction method based on MEMD and PE 
quantitatively, the fault frequency ratio(FFR) is introduced 
firstly.

For a bearing fault signal ( )x n , let ( ) [ ( )]X f F x n= , 
where F is the envelope spectral transform. Then the FFR 
is defined as:

2

1

( )

( )
fault

N
ii

X f
FFR

X f
=

=
∑

  (11)

Where ( )iX f  is the modulus of ( )iX f , and faultf  is the 
fault characteristic frequency of the bearing fault signal.

In this paper, an improved feature extraction method 
applied to fault diagnosis of rolling bearing based on MEMD 
and PE is proposed, and the whole processing procedure is 
shown in Fig. 1. And the procedure of the proposed method 
is summarized as follows:

THE PROCEDURE OF FILTERING SIGNAL BY SK

 Obtaining the central frequency cf  and bandwidth wB  
by using the SK algorithm firstly. Then design the optimized 
band-pass filter and optimized band-stop filter according to 
the central frequency cf  and bandwidth wB . Extracting the 
SOI signal by the optimized band-pass filter, and the SOI 
signal contains more of fault characteristics. Obtaining the 
residual signal by the corresponding band-stop filter. The 
procedure of filtering signal by SK is mainly to get rid of the 
irrelevant interference which is not in the same frequency 
band of the fault frequencies.

THE PROCEDURE OF PROCESSING SIGNAL BY MEMD 
AND PE

(a) Decompose the SOI signal by MEMD, and a series 
of IMFs are obtained; 
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(b) Calculate the PE value of each IMF to get IMFiPE . 
Then calculating the PE value of the residual signal to get 
the *_threshold B  and the PE value of the normal bearing 
signal to get the *_threshold A ; 

(c) Reconstruct the bearing fault signal from the IMFs by 
comparing the PE value of each IMF IMFiPE  with threshold 
values *_threshold A and *_threshold B , the IMF which 
fulfil the equation *

*

_

_ max
IMFi

IMFi

PE threshold A and

PE threshold B is imum

>

−

 

is used to reconstructed the bearing fault signal. The procedure 
of processing signal by MEMD and PE is mainly to remove 
the relevant interference which is in the similar frequency 
band of the fault frequencies.

THE PROCEDURE OF EXTRACTING THE FAULT 
FREQUENCY

Calculate the spectral envelope of the reconstructed 
bearing fault signal, and then calculating the FFR value 
of the reconstructed bearing fault signal based on the spectral 
envelope.

Yes

Fig. 1. The processing procedure of the proposed method

To verify the proposed feature extraction method in this 
paper, a simulated bearing fault signal is used to verify the 
correctness of the proposed method. According to the fault 
model of rolling bearing, the formula for inner fault model 
of rolling bearing under noise is defined as:

( ) [1 ( )] cos(2 ) ( )inner zy t Cx t f t n tπ= + ∗ ∗ ∗ +  (12)

Where zf  is the resonant frequency of the rolling bearing 
system, ( )n t is the noise, and ( )innerx t  is the inner fault 
signal, and the definition is as follows:

 
( ) [1 cos(2 )]

cos(2 ), 1, 2,
inner a

i

x t A B f t
n f t n

π
π
= ∗ + ∗ ∗ ∗

∗ ∗ ∗ ∗ = 

 (13)

Where af  is the rotating frequency, and if  is the inner fault 
frequency.

The simulated bearing inner signal is shown as Fig.2(a), it is 
clearly that the fault frequency is 106.2Hz, which agrees with 
the theoretical value. Then the simulated signal is processed 
by the proposed method in this paper, and the de-noised 
simulated signal is obtained and is shown in Fig.2(b). In the 
envelope of the de-noised simulated signal, the fault frequency 
106.2Hz is well preserved and the interferences are suppressed 
effectively. In order to describe the result intuitively, FFR is 
calculated and the results are shown in Table 1.

According to the Table1, the FFR value of the simulated 
signal is 0.5245, while the FFR value of the De-noised 
simulated signal which is obtained by the proposed method 
in this paper is 0.6682. It has improvement of 27.3% according 
to the FFR value of the simulated signal. In a word, the 
improved feature extraction method based on MEMD and 
PE is effective in the feature extraction of the rolling bearing 
vibration signals.
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Fig. 2. The simulated inner fault signal; (a) The time domain and envelope 
spectrum of the simulated inner fault signal; (b) The time domain and 

envelope spectrum of the de-noised simulated signal which is obtained by the 
proposed method

Tab. 1. The FFR of inner fault simulated signal

Signal FFR FFR

Simulated signal 0.5245
27.3%

De-noised simulated signal 0.6682
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EXPERIMENT AND RESULT

All the bearing vibration signals analyzed in this paper 
are downloaded from the Case Western Reserve University 
(CWRU) Bearing Data Centre. As shown in Fig. 3, the test 
stand consists of a 2 horsepower, three-phase induction motor 
(left), a torque sensor (middle), a dynamometer (right) and 
a self-aligning coupling (middle). The type of the tested 
bearing used in the experiment is the deep groove ball 
bearings 6205-2RS JEM SKF, and the information of the 
tested bearing are shown in Table 2. Single pointe fault is 
arranged in the bearing by electric discharging machining 
(EDM) technique and the defect size is 0.007inch in diameter, 
0.0011inch in depth. The sampling frequency is 12KHZ and 
the shaft rotating speed of the motor 1730rpm. Under this 
environment, the normal bearing signal (NORM), the inner 
race fault bearing signal (IRF), the outer race fault bearing 
signal (ORF) and the rolling element fault bearing signal 
(REF) are collected by using the accelerometers. The time-
domain waveforms of the four kind signals are shown in 
Fig. 4. In Table 3, the fault characteristic frequency (defect 
frequency) of the inner race fault, outer race fault and rolling 
element fault are listed.

Fig. 3. The test stand of bearing
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Fig. 4. NORM signal and IRF, ORF, REF fault signals

Tab. 2. The information of the tested bearings

Inside 
Diameter

(inch)

Outside 
Diameter

(inch)

Thickness
(inch)

Ball 
Diameter

(inch)

Pitch 
Diameter

(inch)

Number 
of Balls
(inch)

0.9843 2.0472 0.5906 0.3126 1.537 9

Tab. 3. Characteristic frequency of the tested bearing

Characteristic 
frequency

Rotating speed 
r(RPM) Equation Value

(Hz)

Defect on inner 
race (BPI) 1721 2

(1 cos )

rBPI N

d
D

α

=

+



155.3

Defect on outer 
race (BPO) 1725 2

(1 cos )

rBPO N

d
D

α

=

−



103.6

Defect on 
rolling element

(BS)
1722 2

2

2

(1 cos )

r DBS
d

d
D

α

=

 −  
 



67.6

Where N is the number of balls, d is the ball diameter, 
D is the pitch diameter, andα is the contact angle.

In this paper, PE is used as a criterion to select the IMF 
components which contain more fault information in the 
bearing vibration signals. First of all, the PE of the NORM 
signal, IRF signal, ORF signal and REF signal are studied, 
and the result are shown in Fig.5.
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Fig. 5. The PE values of the NORM, IRF, ORF and REF signals;  

(a) The PE value changes over time;  
(b) The mean value and range of variation of the PE value

In Figure 5(a), it is clearly that the PE of NORM signal, IRF 
signal ORF signal and REF signal could be clearly separated. 
According to the theoretical analysis, when a localized fault 
occurs on the bearings, the measured bearing vibration 
signals will contain more internal modes and the value of PE 
will increase. This confirms the results in Fig.5(a). Namely, the 
PE values of bearing fault signals (IRF signal, ORF signal and 
REF signal) are higher than the PE value of normal bearing 
signal. The mean PE values of NORM signal, IRF signal ORF 
signal and REF signal are 0.7170, 0.8964, 0.9519 and 0.8081 
respectively. In a word, PE is suitable to be used as a criterion 
for selecting the components which contain the information 
of the faults in rolling bearings to reconstruct the bearing 
fault signals.

After validating the effectiveness of the PE criterion, the 
analysis of the bearing fault signals (IRF signal, ORF signal 
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and REF signal) by our proposed method are carried out. The 
first process of the process method is to remove the noise from 
the raw bearing vibration signals by using the SK method. 
The results of filtered signals by SK are shown in Figs. 6–8. 
In Figs. 6-8, the x-axis is limited to the range of 0-500Hz so 
that the characteristic frequencies can be observed clearly. 
In Fig. 6(a), the maximum kurtosis of the IRF signal is 0.5, as 
shown in the red dash-line rectangle. The central frequency 
and band width is 3500Hz and 1000Hz, respectively. Based 
on the central frequency and band width, the optimal band-
pass filter is designed. The filtered IRF signal and its envelope 
spectrum are shown in Fig. 6(b). It is clearly that the fault 
characteristic is well reserved in the filtered IRF signal. The 
same analysis process for ORF and REF signals and the results 
are shown in Figs. 7-8, and the fault characteristic frequencies 
are also well preserved in the filtered signals which obtained 
by the SK method. 
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Fig. 6. The results of IRF signal by SK. (a) The 2-D SK of IRF; (b) The filtered 
IRF and its envelope spectrum
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Fig. 7. The results of ORF signal by SK. (a) The 2-D SK of ORF; (b) The filtered 
ORF and its envelope spectrum
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REF and its envelope spectrum

After obtaining the filtered bearing fault signals through 
SK, MEMD and PE are further used to recover the bearing 
fault signals. Firstly, IMFs are obtained by decomposing the 
filtered bearing fault signals through MEMD. Then calculate 
the PE of each IMF and choose the specific IMF which contain 
the fault information to reconstruct the bearing fault signals 
by comparing the PE value of each IMF with the threshold 
values. Figures 9 shows the MEMD decomposition results 
of the filtered bearing fault vibration signals.
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Fig. 9. The first five IMFs of the filtered IRF, ORF and REF signals; (a) The first 
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(c) The first five IMFs of filtered REF signal

The PE of the first five IMFs of filtered IRF signal, filtered 
ORF signal and filtered REF signal are listed in Tables 4–6. 
Besides, the threshold values of PE of the corresponding 
residual signal and NORM signal are also listed in Tables 4-6.
Tab. 4. The PE valued of the first five IMFs of filtered IRF Signal, residual IRF 

signal and NORM signal

 PE
Filtered IRF 

signal
residual IRF 

signal NORM signal

IMF1 0.798

0.826 0.717

IMF2 0.846
IMF3 0.611
IMF4 0.431
IMF5 0.319

Tab. 5. The PE values of the first five IMFs of filtered ORF signal, residual ORF 
signal and NORM signal

PE
Filtered ORF 
fault signal

residual ORF 
signal NORM signal

IMF1 0.70

0.899 0.717
IMF2 0.91
IMF3 0.606
IMF4 0.479
IMF5 0.53

Tab. 6. 	 The PE values of the first five IMFs of filtered REF Signal, residual 
REF signal and NORM signal

PE
Filtered REF 
fault signal

Residual REF 
signal NORM signal

IMF1 0.876

0.801 0.717
IMF2 0.508
IMF3 0.482
IMF4 0.357
IMF5 0.265

According to the procedure of the improved feature 
extraction method based on MEMD and PE mentioned in Fig.1, 
the reconstructed bearing fault signal is composed of the specific 
IMF which fulfills the conditions *_IMFiPE threshold A>  and 

*_ maxIMFiPE threshold B is imum− . Table 4 shows the PE 
value of the first five IMFs of filtered IRF signal, the residual 
IRF signal and the NORM signal, the *_threshold A  is 0.717, 

*_threshold B  is 0.801, and the PE values of the first IMFs 

of the filtered IRF signal are 0.798, 0.8466, 0.611, 0.431 and 
0.319 respectively. Therefore, the reconstructed IRF bearing 
fault signal is the IMF2 of the filtered IRF signal. Applying 
the same analysis process to the ORF signal and REF signal, 
so the reconstructed ORF bearing fault signal is the IMF2 
of the filtered ORF signal, and the reconstructed REF bearing 
fault signal is the IMF1 of the filtered REF signal. Finally, the 
reconstructed bearing fault signals of IRF, ORF and REF and 
their envelope spectrums are shown in Fig.10. It is clearly 
that the characteristic frequencies are well reserved in the 
reconstructed bearing fault signals.
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In Table 7, the FFR of the raw bearing vibration signals, 
filtered bearing vibration signals and reconstructed bearing 
vibration signals are shown. It is obviously that, the FFR 
value of reconstructed signals (reconstructed IRF signal, 
reconstructed ORF signal and reconstructed REF signal) are 
higher than the FFR value of raw signals (IRF signal, ORF 
signal and REF signal). Therefore, it is distinct that the 
improved collaborative method based on MEMD and PE 
is effective to extract the fault characteristics of the rolling 
bearings. 
Tab. 7. The FFR values of the raw signals, filtered signals and reconstructed signals

FER

Fault category

Raw signal Filtered signal Reconstructed 
signal

Inner race fault(IRF) 0.91 1.27 1.91
Outer race fault(ORF) 1.64 1.92 2.93
Rolling element 
fault(REF) 0.56 2.07 7.23

According to the results in Table 8, as for the inner race 
fault, outer race fault and rolling element fault, the proposed 
method in this paper has improvement of 6.8%, 7.9% and 5.9% 
respectively compared with the method proposed by Guo et 
al, and 15.1%, 14.6% and 12.3% respectively compared with 
the method proposed by Wu et al. Therefore, it is distinct that, 
our improved collaborative method based on MEMD and PE 
is more effective to recover bearing fault signals from noisy 
raw signal, and also the fault characteristic frequencies are 
amplified in the reconstructed bearing fault signals.
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CONCLUSION

In this paper, an improved feature extraction method for 
rolling bearing fault diagnosis based on MEMD and PE was 
proposed to extract the bearing fault features from the noisy 
bearing vibration signal. The proposed method solves two big 
problems. (1) To get rid of the irrelevant interferences of the 
fault frequencies by filtering the signal by optimal band-pass 
filter which determined by SK algorithm; (2) Combine the 
MEMD and PE algorithms, a novel method to get rid of the 
relevant interferences of the fault frequencies is put forward. 
Then, the proposed method is validated by the simulated 
signals and real bearing vibration signals. Further, some 
comparisons of the proposed method with the other feature 
extraction methods proposed in recent three years are done, 
and it further prove that our proposed method has better 
performance in the feature extraction of rolling bearing 
signals.
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