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ABSTRACT

The technologies of sonar and laser scanning are an efficient and widely used source of spatial information with regards 
to underwater and over ground environment respectively. The measurement data are usually available in the form 
of groups of separate points located irregularly in three-dimensional space, known as point clouds. This data model 
has known disadvantages, therefore in many applications a different form of representation, i.e. 3D surfaces composed 
of edges and facets, is preferred with respect to the terrain or seabed surface relief as well as various objects shape. 
In the paper, the authors propose a new approach to 3D shape reconstruction from both multibeam and LiDAR 
measurements. It is based on a multiple-step and to some extent adaptive process, in which the chosen set and sequence 
of particular stages may depend on a current type and characteristic features of the processed data. The processing 
scheme includes: 1) pre-processing which may include noise reduction, rasterization and pre-classification, 2) detection 
and separation of objects for dedicated processing (e.g. steep walls, masts), and 3) surface reconstruction in 3D by point 
cloud triangulation and with the aid of several dedicated procedures. The benefits of using the proposed methods, 
including algorithms for detecting various features and improving the regularity of the data structure, are presented 
and discussed. Several different shape reconstruction algorithms were tested in combination with the proposed data 
processing methods and the strengths and weaknesses of each algorithm were highlighted.
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INTRODUCTION

Acoustic sensing of seafloor and underwater objects 
used to obtain their 3D shape and relief representation has 
several applications, which include acquiring the underwater 
information with respect to safe navigation, positioning 
of offshore installations such as oil platforms or oil and 
gas pipes, marine archaeology where it aids to investigate 
and visualise in 3D the underwater objects like wrecks and 
other man-made constructions, recognition of topographical 
features of the seabed for maps construction and in the 
context of applications where the 3D mesh of bottom terrain 
is needed for modelling various processes occurring in waters, 

as well as research, monitoring and visualization of marine 
environment pollution [3].

At the same time, the over terrestrial  LiDAR (Light 
Detection And Ranging) scanning applications include the 
creation of detailed 3D topographic maps [4], modelling 
of various processes and phenomena related to the area of 
research in urban areas [3] or local prediction of the accuracy 
of satellite navigation systems when taking into account 
obstructions such as satellite coverage and multipath signal 
propagation, the protection of critical infrastructures, the 
creation of 3D terrain visualization systems dedicated for 
various purposes (e.g. supporting the training of emergency 
services with the use of real-field simulation [8]), the recreation 
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of detailed digital models depicting architectural monuments, 
allowing for their later restoration in the case of damage 
or destruction.

The data describing the shape of researched areas, 
obtained by either probing the seafloor with a multibeam 
echo sounder or scanning over-ground terrain with a LiDAR 
device, are usually available in the form of groups of separate 
points located at irregular intervals in three-dimensional 
space, known as point clouds. This data model has several 
disadvantages, i.e.: it may be difficult to spot some features 
in a point set (such as small objects) which would be easier 
to notice on the surface of a solid object, some datasets may 
need to be viewed from specific angles if their point density 
is low, even primitive surfaces such as flat building roofs 
have to be represented by a dense group of points (see Fig. 1) 
which causes the data to require unnecessary large amounts 
of disk storage and system memory.

Fig. 1. Sample dense point cloud representing a set of buildings of relatively 
simple shape. Image captured with a visualization application created by one 

of the authors

For these reasons, a more practical solution involves the use 
of three-dimensional spatial objects in the form of surfaces 
consisting of higher order geometric structures like edges and 
facets, known as triangulated irregular network (TIN) models. 
What is more, the overall shape of many of the researched 
objects is mostly regular and features fragments such as 
flat walls and smooth seabed. It means that representing 
them in the form of solid meshes results in simplifying their 
visualization, also in the context of memory usage and the 
performance of various algorithms used to process the data 
during later steps.

Many solutions exist for recovering the shape of the 
seafloor and underwater objects which can be used for data 
acquired by multibeam echo sounders and side scan sonars. 
Also, the dedicated, commercial software packages like 
Caris HIPS and SIPS [6], Kongsberg Seafloor Information 
System (SIS) [21] or QINSy Software [19] support to some 
extent such functionality with respect to acquired multibeam 
datasets. However, the utilised approaches rely mainly on 
straightforward application of TIN surface construction or 
other meshing procedure directly from point cloud data, what 
frequently causes an occurrence of numerous artefacts and 
in consequence produces minor quality results.

Attempts to recover the higher order geometric structures 
of underwater objects are not widely reported in literature. 
Notable methods include analysing the adjacency of points in 

a dataset and detecting the acoustic shadow zones [4], dividing 
the data into several blocks and constructing Delaunay 
triangulations in sub-blocks individually [16], integration 
of data obtained by both acoustic and optical sensors through 
geometrical correspondences and registration [10] as well 
as adopting a stereo-like vision approach based on image 
matching [17].

In case of over ground areas, the existing solutions for 
three dimensional reconstruction of investigated objects 
shape are primarily used with LiDAR data and include 
approaches such as: assembling building blocks from 
a set of standard roof shapes [11], roof plane segmentation 
performed by minimizing an energy function [13], merging 
LiDAR and hyperspectral image data and performing 
shape reconstruction using the implicit geometry method 
[18], decomposing building footprints and estimating roof 
models with the use of RANSAC technique [9], as well as 
reconstructing building roofs from LiDAR data integrated 
with optical multi-view images [7].

From more detailed analysis of the state of the art in the 
mentioned subject, it may be concluded that the existing 
solutions are partially satisfactory and still need extensive 
research. Up to date, a large number of various algorithms 
dedicated to transforming point cloud data into more 
complex TIN models [12][2][23][1] is known. Unfortunately, 
due to the nature of data acquisition methods based on the 
use of technologies related to acoustic sounding and laser 
scanning, the end results often end up being unsatisfactory 
when standard surface reconstruction techniques are used. 
Common problems include significant amounts of noise 
(i.e. existence of large numbers of points which should be 
excluded from further processing), frequent lack of data, 
as well as strong variability of local point density and data 
accuracy inside a single point set. To a certain extent, the 
data in this form can be used in order to recreate the surface 
of simple objects [5] and in some cases also buildings [22]
[20]. However, in case of more complex and varied objects, 
obtaining satisfactory results is often much more difficult 
to achieve [14].

The creation and application of a new method for three-
dimensional reconstruction specialized for the aforementioned 
types of data may enable the creation of more accurate and at 
the same time less complex models of the researched objects, 
which can later be used in various geographic information 
systems and other software offering the visualization of three-
dimensional scenes. In this paper, the authors propose a new 
approach to 3D shape reconstruction from both multibeam 
and LiDAR measurements. It is based on a multiple-step and 
to some extent adaptive process, in which the chosen set and 
sequence of particular stages may depend on the current type 
and characteristic features of the processed data.

DATA DESCRIPTION

The input data described in this article have the structure 
of georeferenced three-dimensional point clouds. Most of the 
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underwater data were acquired with a multibeam echosounder 
with 160 beams, mounted to the bottom of a vessel moving at 
an average speed of 1 m/s with a ping rate equal to 0.96 Hz. 
Since most of the research was performed in 43 m water 
depth, the average distance between consecutive points in 
a single swath is equal to 0.28 m. The terrestrial data consists 
of multiple laser scans obtained with the use of LiDAR 
devices, resulting in a large dataset with the average resolution 
of around 19 points/m2. Even though the data originate from 
many different sources (Gdańsk University of Technology, 
Kongsberg Maritime AS, Maritime Office in Gdynia, Polish 
Centre of Geodesic and Cartographic Documentation), 
their spatial structures are quite similar and have the form 
of unorganised point clouds with varying density, which is 
caused by the fact that the method used for acquiring the 
data involves the use of vehicles such as ships and aircrafts 
which gather the data while remaining mostly at the same 
altitude. Because of this, the surfaces which are parallel to 
the vehicle’s track of movement, like ground and rooftops, 
are represented in greater detail than other surfaces, such 
as walls and masts. This means that the spatial structure 
of these data are actually similar to raster height maps. The 
LiDAR data sets contain additional information, such as the 
colour value of each point, as well as classification information 
where every point is assigned to a single class representing 
objects such as buildings, ground, water as well as different 
types of vegetation.

DATA PROCESSING METHODS

The proposed solution for reconstructing data obtained 
by multibeam sonars and LiDAR systems is a multiple-step 
process which is presented in Fig. 2. 

Fig. 2. The flow chart of the proposed solution

Since both of these types of data usually have a similar 
spatial structure, many of the proposed methods can be 
applied to datasets obtained from various different sources 
after performing proper pre-processing. After that, the pre-
processed point clouds are split into separate objects using 
methods dedicated to specific types of data (described in 
section 3.2). Finally, the shape of each object is reconstructed 
by specialized triangulation algorithms (section 3.3) designed 
for the proposed file structure and 3D models of surfaces are 
generated and saved on the disk.

PRE-PROCESSING

Since the input data originate from different sources, they 
have to be converted into a common file structure so the 
same processing algorithms can be used for different types 
of data. One of the major steps performed during this process 
is converting the input data from the form of irregular point 
clouds into the structure of regular raster grids. This greatly 
simplifies further steps of the processing pipeline, such as 
the application of feature detection algorithms, and allows 
for the use of point cloud triangulation methods designed 
to work in two-dimensional space. Two approaches are used 
for determining the optimal resolution for creating raster 
network points from input data:
I.	 Since most underwater datasets were obtained with the 

use of a vessel maintaining mostly the same heading (the 
difference to the desired direction was usually not greater 
than 15 degrees) during the seabed measuring, these 
data are treated as a set of raster rows (where each row is 
represented by a single swath), and the number of columns 
is equal to the number of the echosounder beams.

II.	For other data (including terrestrial datasets), the process 
of generating raster network points is explained in greater 
detail in further parts of this section.
 During this step, additional noise reduction methods are 

applied, which remove or minimize the distortions caused 
by specific types of irregularities while preserving as much 
information as possible. In general, three types of problems 
are taken under consideration [15]:

I. Lack of data in some areas, which may affect the 
results of automatic object detection and cause the creation 
of unnecessary spaces lacking data in the process of surface 
reconstruction. For this reason, the proposed approach is to 
generate new points for these areas in order to make the data 
structure more regular. The values for the newly introduced 
points can be provided by coping the height values from 
non-empty neighbours.

II. Strong variability of local point density, which can be 
solved by converting the entire data into the form of a regular 
raster. This is done by dividing the point set into a grid of two-
dimensional sectors of equal size and assigning each point to 
a single element. Every sector is then converted into a single 
point in the resulting dataset, where its height will be equal 
to the average height of all points located inside this sector. 
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Figure 3 provides an additional explanation of solving the 
problem of varying point density combined with the idea 
of filling empty areas with generated points. The tile size 
is decided by empirically testing different values for the 
output number of rows and columns. The chosen resolution 
is considered optimal if the number of no-data points in the 
output raster (prior to filling empty areas) does not exceed 
5% of all points in the converted dataset.

III. Large amounts of local noise, which strongly affects 
the final reconstruction process and causes the creation 
of surfaces of highly undesirable shapes. This can be solved by 
using an algorithm such as the “envelope filter”, which divides 
the distorted area in small groups of points and preserves 
only the most significant ones which would describe the outer 
surface of the data in the best possible way.  Figure 4 shows 
the results of applying the envelope filter while introducing 
new points with values calculated by the method of linear 
interpolation.

Fig. 3. An example of dividing a dataset into a regular grid of sectors (outlined 
in blue) and converting it into a two-dimensional array of points. The empty 
sectors C2 and D3 are replaced with newly generated points (depicted in red) 

calculated from height values of non-empty neighbour points

Fig. 4. A sample set of points (a) located in two-dimensional space is processed 
by the envelope filter, resulting in a point set (b) representing the outer surface 

of the object

The last important step which has to be performed during 
the pre-processing stage is detecting individual objects 
in the data and assigning them to separate classes. Data 
classification was proven to be a successful technique for 
improving the quality of various surface reconstruction 
methods for underwater objects [14] and can offer the same 
benefits for similar types of data, such as the possibility of 
using different methods and their parameters for recognized 
objects depending on their type (additional operations can 
be performed on complicated objects such as buildings and 
shipwrecks which would not be required for simpler objects 
like ground and seabed), as well as the overall improvement 
of the results provided by various shape reconstruction 

algorithms, as sometimes they fail to properly preserve the 
gaps found between separate objects if they lack classification 
information and are treated as a single objects.

DATA TYPE SPECIFIC ACTION

Different procedures are applied to the data depending on 
their contents. For this reason, the following section is split 
into two categories, one dedicated to underwater environment 
and the other one to terrestrial objects.

Underwater environment
A specialized algorithm for dividing the data into 

separate objects is applied to files representing contents of an 
underwater environment. This algorithm consists of several 
steps explained in the following section and has customizable 
parameters which make this method more flexible. The results 
of performing each step of the algorithm on a sample dataset 
using default values for input parameters are presented in 
Figure 6.

I. Temporary removal of details: A copy of the dataset 
representing the height of each point is created and any local 
irregularities in the data are reduced by processing them 
with a median filter algorithm using a 3×3 kernel. This copy 
is then used as reference for further steps of the algorithm, 
otherwise the results would be heavily affected by any local 
irregularities present in the original data.

II. Initial classification: The dataset is divided into two 
classes depending on the height delimiter defined by one 
of the algorithm’s customizable parameters. By default, each 
point with a height less or equal to a set value (function 
parameter) of the dataset’s height delta is assigned to the 
class representing the seabed, while all remaining points are 
preliminarily classified as a part of some underwater objects. 
The default value of this delimiter is equal to 10%, which 
is satisfactory for data describing large underwater objects 
like shipwrecks, while for other data the algorithm should 
eventually assign all points to the seabed class.

III. Classification correction: The algorithm enters 
a correction loop, which attempts to change the assignments 
of some of the points which were not classified as a part 
of the seabed in the previous step. In each iteration of the 
loop the algorithm checks every point located on the border 
of the seabed class and compares it with its neighbours from 
the other class – if the height difference between a neighbour 
point and the border point is not greater than a set value 
(by default it is 5% of the dataset’s height delta), then this 
neighbour is also assigned to the seafloor class. The loop 
continues as long as there are potential points which could be 
assigned to the seabed class. A detailed step-by-step example 
of applying the correction loop to the sample point set is 
presented and explained in Fig. 5. The initial state of the 
point set (after applying preliminary classification) is shown 
in Fig. 5 a), where the blue points represent seabed while 
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the red points represent the underwater objects class. In Fig. 
5 b) the algorithm checks the height of points A, C and F, 
which are the nearest neighbours of point B and classifies 
point F as a part of the seafloor. In Fig. 5 c) the neighbours 
B, D, and G of point C are checked by the algorithm and as 
a result point G is assigned to the seabed class. In Fig. 5 d) the 
nearest neighbours of point F are tested for the possibility of 
shifting classes, but none of them are assigned to the seafloor 
class, as the height difference between the pairs of points FE 
and FJ are too high while points B and G are already classified 
as parts of the seafloor class. In Fig. 5 e) and Fig. 5 f) points K 
and L are assigned to the seabed class. In Fig. 5 g) the point 
classification remains unchanged. The final result of applying 
the correction process is shown in Fig. 5 h).

Fig. 5. A step-by-step process of performing each iteration of the correction 
loop part of the object detection algorithm, where the delimiter for assigning 

neighbour points is equal to 0.5 units

IV. Object separation: Separate groups of points which 
are surrounded by points classified as seabed are assigned to 
new classes, where each class is unique to a single group. After 
this step, every class should represent a different underwater 
object, such as a shipwreck. Figure 6 presents the results 
of applying two steps of the classification algorithm to 
a point cloud featuring a single shipwreck (Fig. 6 a): initial 
classification (Fig. 6 b) and classification correction (Fig. 6 c) 
using the default parameter values.

Among the objects described by the input data there are 
some which are not suitable for further processing, mainly 
because they are represented by a very small number of points, 
which is insufficient for automatic reconstruction of high-
quality meshes. In case of files representing the approximate 
surface of underwater environments, the shipwreck masts 
are a notable example of such objects. In case of land data, 
the objects which are not suitable for reconstruction include 
different types of vegetation, as well as other objects such as 
lamp posts. These types of objects are removed from further 
processing in order to improve the overall quality of mesh 
reconstruction.

Fig. 6. The results of applying several steps of the classification algorithm 
to a single point cloud featuring a shipwreck lying in the Gulf of Gdansk 

at 43 m water depth

The algorithm for detecting masts in an object describing 
a shipwreck is as follows. First of all, the object is divided 
into regular sectors, where each sector represents a group 
of points and is assigned a value equal to the position of the 
highest point in this group. After this step, each sector 
whose value is larger or equal to 60% of the object’s height is 
preliminarily classified as a fragment of a mast (an assumption 
is made that the shipwreck is oriented in such a way that its 
bottom is mostly lying on the seabed). Those sectors which 
are connected with each other are then merged into larger 
groups. Finally, these groups whose number of points is larger 
than 5% of all points of the processed object are considered 
to be something entirely else than masts and are assigned to 
the base “non-masts” class. All points classified as masts are 
then copied into a separate object, while the originals are 
removed from the source object and replaced with newly 
generated points to fill up the created gaps. Fig. 7 compares 
the results of reconstructing a sample point set with and 
without applying the masts detection algorithm.



POLISH MARITIME RESEARCH, No 2/201852

Fig. 7. The results of performing surface reconstruction on the point set 
describing the Cleona shipwreck (lying near Asker in 18 m water depth), before 

(a) and after (b) applying the masts detection algorithm

Over ground objects
Since all of the files representing land objects used in this 

work already contain classification information, the amount 
of processing for these data is significantly lower than in case 
of underwater environments. Additional steps are performed 
for land objects classified as buildings:

I. Distant objects are separated from each other and 
processed independently.

II. Ground points located next to a building are assigned 
to that building. This is done to make sure that each wall 
of a reconstructed object actually touches the ground.

III. Walls are detected for each building with the following 
algorithm. First of all, the minimum and maximum height for 
each building is determined. After that, the algorithm iterates 
through each row and column of the grid describing current 
building and searches for areas where the height difference 
between neighbour points is very large. If a pair of points is 
found where the height difference between them is larger or 
equal to 25% of the height difference between the highest 
and the lowest point of the building, then both points are 
classified as a part of a wall. The results of applying this wall 
detection algorithm can be seen in Fig. 8.

Fig. 8. Sample dataset containing several buildings of the Gdansk University of 
Technology (a) processed by the wall detection algorithm (b)

IV. Additional edge de-rasterization algorithm is 
performed in order to reduce irregularities caused by raster 
characteristics of the data structure by altering the positions 
of some of its points. For this reason, a special dictionary 
of patterns was prepared, which features a number of various 
shapes which can be used to describe straight lines in raster 
graphics, along with proper vector representations of each 
line. This dictionary is then used by the algorithm in order 
to find groups of points representing walls of a building 
and modify their positions in such a way that they form 
actual straight lines in 3D space. Several notable examples 
of representing lines in raster graphics are shown in Figure 
9 a), while Figure 9 b) shows proper replacements of these 

shapes in vector graphics. The algorithm also affects the 
positions of points located near detected walls by moving 
them slightly towards these walls. This is performed mainly 
in order to improve the shading of the output models when 
calculating per-vertex normals. The final results of the edge 
de-rasterization algorithm combined with previous steps 
explained in this paragraph can be seen in Fig. 10.

Fig. 9. Replacement tables used for altering raster representations of sample 
lines shown in a) along with the desired shapes of these lines presented in b)

Fig. 10. Surface reconstruction results for data prior (a-b) and after (c-d) the 
application of the edge de-rasterization algorithm

SURFACE RECONSTRUCTION

For underwater data, as well as for terrestrial objects for 
which no walls were detected in previous steps, the entire 
surface of the object is recreated by using a specialized 
algorithm which accepts a two-dimensional grid of points 
as input and builds triangles on top of chosen points after 
comparing their heights. The algorithm analyses the data 
by iterating through points located in the same row (for 
underwater data, each row describes the contents of a single 
swath) and looking for potential candidates for forming 
a triangle in the next (neighbour) row. Given the nature of the 
data structure, assuming that it was properly pre-processed, 
this limitation should not exclude valuable candidates from 
the process and it also grants the possibility of performing 
parallel computations. During each iteration, the current 
point and its next neighbour in the same row are automatically 
picked for creating the next triangle, while the third required 
point is chosen from the next row. The third point is selected 
from a subset of points in the next row which are located 
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near the first two points and the best candidate must fulfil 
the following requirement: its height being the closest to the 
average value of the first two points. Finally, a single triangle 
is added on top of the two current points in the first row and 
the third point from the second row. After that, the algorithm 
fills any holes which might have been created during that 
step. A step-by-step example of reconstructing a sample grid 
of heights is presented in Figure 11.  Fig. 11 a) depicts the input 
point set, where the height of each point is given in brackets. 
Fig. 11 b) shows the first step of the algorithm, where the 
triangle CFE was created, since points E and F were the first 
points in the first row and the height of point C from the 
second row was closest to the average value of the pair EF. 
Fig. 11 c) represents the results of performing the next step 
of the algorithm, where the holes between points CEA were 
filled with two new triangles: ABE and BCE. Fig. 11 d) shows 
the next iteration of the algorithm using the same logic as in 
Fig. 11 b). Fig. 11 e) and Fig. 11 f) depict the next steps which 
the algorithm performs in order to fill the remaining holes by 
introducing new triangles CDF and DHG. Fig. 11 g) represents 
the final result of applying the triangulation algorithm, where 
the sub-figure CDGFE is distinguished to point out that the 
algorithm is capable of generating surfaces with properly 
placed edges between steep walls which makes the output 
model look more natural.

Fig. 11. An example of reconstructing a small point set using the triangulation 
algorithm explained above.

Otherwise, if the data describe terrestrial objects with 
detected walls, a multi-step approach is used, which consists 
of dividing each object into smaller rectangular sectors (each 
consisting of up to four points) and reconstructing each 
sector with the proper triangulation algorithm. The default 
algorithm is used for sectors which do not contain any points 
classified as walls. The other sectors are reconstructed with an 
algorithm which performs different actions depending on the 
number of points in each sector which were classified as a part 
of walls. If the number of “wall points” in a sector is equal 
to 4, then there are only two different ways of triangulating 

this sector possible as shown in Figure 12. Both of them offer 
correct methods of building triangles from given points, but 
better quality of the reconstructed surface can be achieved if 
the proper method is chosen with the following condition. 
The choice between methods shown in Fig. 12 a) and Fig. 12 b) 
is made by comparing the following pairs of points: BD and 
AC, and determining which pair should form an edge. If 
points B and D are the two highest or the two lowest points 
in this sector, then option a) is chosen for the reconstruction 
process, otherwise option b) is used instead.

Fig. 12. Two different methods of triangulating a sector of four non-empty 
points.

If the number of “wall points” in a sector is equal to three, 
then the solution is straightforward and involves two steps: 
creating a triangle from these three points and if the fourth 
point is not empty, introducing an additional triangle in a way 
that fills the remaining hole in this sector. There are exactly 
four different scenarios which have to be considered in this 
step, as presented in Fig. 13.

Fig. 13. Possible methods of triangulating a sector featuring exactly three 
“wall points”

All remaining scenarios of triangulating a sector which 
are considered by the algorithm are presented in Fig. 14. If 
the number of “wall points” is equal to two and they form the 
diagonal BD, then up to two triangles are created, depending 
on whether the points A and C are empty or not, as seen 
in Fig. 14 a) and Fig. 14 b). If points B and D are both not 
classified as a part of a wall and there are no empty points 
in the sector, then two triangles are built using the method 
shown in Fig. 14 c). Otherwise, if the sector contains only 
three non-empty points in total, then only a single triangle 
can be created using one of four possible methods presented 
in Fig. 14 d) e) f) and g).

Fig. 14. Remaining methods of triangulating a sector featuring no more than 
two “wall points”
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The difference between results obtained by the multi-step 
triangulation algorithm and the single‑step version in many 
cases can be a subtle one, but is clearly noticeable in situations 
where the reconstructed object contains regular plain walls, 
as seen in Fig. 15.

Fig. 15. The subtle difference between performing the single-step (a) and the 
multi-step triangulation.

RESULTS

In the research the proposed triangulation algorithms have 
been tested for reconstructing the shape of several objects 
represented by point cloud datasets processed with the use 
of methods described in paragraph 3.1-3.2. The same data 
were then used to obtain meshes using known methods for 3D 
surface reconstruction, including two-dimensional Delaunay 
triangulation, the Ball-Pivoting algorithm and the Poisson 
Surface Reconstruction method. The results shown for these 
known methods are the best ones, obtained by empirically 
testing the available parameters upon which they depend.

The first set of tests was performed on the low-resolution 
dataset shown earlier in Fig. 6, and the results of these tests 
can be seen in Fig. 16.

Fig. 16. The results of applying several surface reconstruction methods to 
two versions of the same dataset representing a low-resolution shipwreck 
(a – unmodified, f – pre-processed): Poisson surface reconstruction (b, g), 

2D Delaunay Triangulation (c, h), Ball Pivoting algorithm (d, i) 
and the proposed triangulation method (e, j).

 In this case, the result obtained with the Poisson surface 
reconstruction (Fig. 16 b, Fig. 16 g) did not preserve any 
of the details seen in the original data. On the other hand, 
the remaining methods offered noticeably better results. 
Using these methods, three very similar models were 
generated, where the mesh created by Ball-Pivoting algorithm 
(Fig. 16 c) contains a significant amount of holes, while the 
2D Delaunay triangulation introduced additional polygons 
near the boundaries of the wreck (Fig. 16 d). The proposed 
reconstruction algorithm offers a result (Fig. 16 e) similar to 
the one created with the Ball-Pivoting method (Fig. 16 d), 
but it features a fewer amount of irregularities.

The second batch of tests were performed on high-
resolution data representing the Cleona shipwreck (Fig. 17a) 
which were processed by the same methods as the previous 
sample, but this time the envelope filter was used as well. The 
results of applying the Ball-Pivoting method were omitted as 
the reconstructed model of the shipwreck represented only 
a very small fragment of the input data.

Fig. 17. The results of applying several surface reconstruction methods to 
a pre-processed dataset (a) representing a high-resolution representation 

of the Cleona shipwreck: Poisson surface reconstruction (b), 2D Delaunay 
Triangulation (c) and the proposed reconstruction method (d).
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During this experiment, the worst result was obtained by 
the Ball‑Pivoting algorithm which could not handle the input 
data properly and as such managed to reconstruct only a small 
fragment of the object, so for this reason it is not featured 
among the results obtained by other methods. Once again, 
the Poisson surface reconstruction performed poorly (Fig. 
17b), while a fair reconstruction of the object was provided 
by the 2D Delaunay triangulation (Fig. 17c). The proposed 
reconstruction algorithm offered a result similar to the one 
created with the Delaunay triangulation, but it also featured 
smoother surfaces as seen in Fig. 17d.

The final tests were performed on a LiDAR dataset featuring 
one of the buildings of the Gdańsk University of Technology, 
which was processed in a similar way as the previously 
discussed data files, but with the additional application of the 
wall detection and de-rasterization algorithm, resulting in 
a regular point set as seen in Figure 18 a.

Fig. 18. The results of applying several surface reconstruction methods to a 
pre-processed high-resolution dataset (a) representing one of the buildings 

of the Gdańsk University of Technology: Poisson surface reconstruction (b), 
Ball Pivoting algorithm (c), 2D Delaunay triangulation (d) and the proposed 

reconstruction algorithm (e).

This time the Poisson surface reconstruction method 
provided a mesh (Fig. 18 b) which features many details 
seen in the input point cloud, although it also reduced 
the sharpness of their edges. The Ball-Pivoting algorithm 
managed to reconstruct most parts of the building (Fig. 18 
c), although the walls were mostly left empty. Both the 2D 
Delaunay triangulation and the proposed reconstruction 
method managed to fully recreate the provided building 
(Fig. 18 d and 20 e) and in this case the mesh generated by 
the Delaunay triangulation algorithm features slightly more 
regular surfaces than the mesh reconstructed by the proposed 
triangulation method. Nevertheless, both methods benefit 
from using the wall de-rasterization algorithm mentioned 
before.

CONCLUSIONS

A multiple step solution for processing, classification and 
reconstruction of point cloud data was presented, dedicated 
to datasets acquired with the use of multibeam sonars and 
LiDAR systems, although it should also be adaptable to other 

sources as long as the input data have similar spatial structure. 
The benefits of using the proposed methods, including 
algorithms for detecting various features and improving the 
regularity of the data structure, were presented and discussed. 
Several different shape reconstruction algorithms were tested 
in combination with the proposed data processing methods 
and the strengths and weaknesses of each algorithm were 
highlighted.
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