Multi-Objective Weather Routing of Sailboats Considering Wave Resistance

Open access


The article presents a method to determine the route of a sailing vessel with the aid of deterministic algorithms. The method assumes that the area in which the route is to be determined is limited and the basic input data comprise the wind vector and the speed characteristic of the vessel. Compared to previous works of the authors, the present article additionally takes into account the effect of sea waves with the resultant resistance increase on the vessel speed. This approach brings the proposed model closer to real behaviour of a sailing vessel. The result returned by the method is the sailing route, optimised based on the multi-criteria objective function. Along with the time criterion, this function also takes into account comfort of voyage and the number of performed turns. The developed method has been implemented as simulation application SaillingAssistance and experimentally verified.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bijlsma S.J.: Minimal Time Route Computation for Ships with Pre-Specified Voyage Fuel Consumption J. Navig. 61 (2008) 723–733.

  • 2. Dębski R.: An adaptive multi-spline refinement algorithm in simulation based sailboat trajectory optimization using onboard multi-core computer systems Int. J. Appl. Math. Comput. Sci. 26 (2016) 351–365.

  • 3. Gao M. G. Shi W. Li Y. Wang D. Liu: ScienceDirect An improved genetic algorithm for island route planning Procedia Eng. 174 (2017) 433–441.

  • 4. Gerritsma J. J.A. Keuning R. Onnink: The Delft Systematic Yacht Hull Series II Experiments 1990.


  • 6. Krata P. J. Szlapczynska: Ship weather routing optimization with dynamic constraints based on reliable synchronous roll prediction Ocean Eng. 150 (2018) 124–137.

  • 7. Krata P. J. Szłapczyńska: Weather Hazard Avoidance in Modeling Safety of Motor-Driven Ship for Multicriteria Weather Routing TransNav. 6 (2012) 71–78.

  • 8. Krata P. W. Wawrzyński: On ship roll resonance frequency Ocean Eng. 126 (2016) 92–114.

  • 9. Krata P. W. Wawrzyński: Prediction of Ship Resonant Rolling - Related Dangerous Zones with Regard to the Equivalent Metacentric Height Governing Natural Frequency of Roll TransNav Int. J. Mar. Navig. Saf. Sea Transp. 11 (2017).

  • 10. Langbein J. R. Stelzer T. Frühwirth: A Rule-Based Approach to Long-Term Routing for Autonomous Sailboats in: Robot. Sail. Springer Berlin Heidelberg Berlin Heidelberg 2011: pp. 195–204.

  • 11. Lazarowska A.: Multi-criteria ACO-based Algorithm for Ships Trajectory Planning TransNav Int. J. Mar. Navig. Saf. Sea Transp. 11 (2017) 31–36.

  • 12. Lisowski J.: ScienceDirect Computational intelligence methods of a safe ship control Procedia - Procedia Comput. Sci. 35 (2014) 634–643.


  • 14. Mannarini G. G. Coppini P. Oddo N. Pinardi: A Prototype of Ship Routing Decision Support System for an Operational Oceanographic Service TransNav Int. J. Mar. Navig. Saf. Sea Transp. 7 (2013) 53–59.

  • 15. Naus K. M. Wąż: The idea of using the A* algorithm for route planning an unmanned vehicle “Edredon” Zesz. Nauk. / Akad. Morska W Szczecinie. (2013) 143-147.

  • 16. Neumann T.: Method of Path Selection in the Graph - Case Study TransNav Int. J. Mar. Navig. Saf. Sea Transp. 8 (2014) 557–562.

  • 17. Niklas K. J. Kozak: Experimental investigation of Steel-Concrete-Polymer composite barrier for the ship internal tank construction Ocean Eng. 111 (2016) 449–460.

  • 18. Philpott A. A. Mason: Optimising yacht routes under uncertainty Proc. 15th Chesap. Sail. Yacht Symp. Annapolis MD. (2001).

  • 19. Philpott a B. I.M. Viola R.G.J. Flay: Optimal Yacht Routing Tactics Innovsail. (2013) 231–237.

  • 20. Salvesen N. E. Tuck O. Faltinsen: Vessel motions and sea loads Trans. SNAME. 78 (1970) 250–287.

  • 21. Specht C. A. Weintrit M. Specht Y. Wo: A History of Maritime Radio-Navigation Positioning Systems used in Poland (2017).

  • 22. Stelzer R. K. Jafarmadar: The robotic sailing boat asv roboat as a maritime research platform Proc. 22nd Int. HISWA Symp. Yacht Des. Yacht Constr. (2012).

  • 23. Szłapczynska J.: Multi-objective Weather Routing with Customised Criteria and Constraints J. Navig. 68 (2015) 338–354.

  • 24. Szłapczyński R. M. Życzkowski: Multi-objective weather routing of sailing vessels Polish Marit. Res. 24 (2017) 10–17.

  • 25. Tagliaferri F. I.M. Viola: A real-time strategy-decision program for sailing yacht races (2017).

  • 26. Wawrzyński W. P. Krata: METHOD FOR SHIP’S ROLLING PERIOD PREDICTION WITH REGARD TO NON-LINEARITY OF GZ CURVE J. Theor. Appl. Mech. 54 (2016) 1329–1343.

  • 27. Weintrit A. P. Kopacz: Computational Algorithms Implemented in Marine Navigation Electronic Systems in: Springer Berlin Heidelberg 2012: pp. 148–158.

  • 28. Wiśniewski B.: Programowanie tras statków na oceanach Zesz. Nauk. / Akad. Morska W Szczecinie. 29 (2012) 164–173.

  • 29. Życzkowski M.: Sailing Vessel Routing Considering Safety Zone and Penalty Time for Altering Course TransNav Int. J. Mar. Navig. Saf. Sea Transp. 11 (2017) 49–54.

  • 30. MAXSURF Design & Analysis Software - Home (2017).

  • 31. ORC - World Leader in Rating Technology (2017).

Journal information
Impact Factor

IMPACT FACTOR 2018: 1,214
5-year IMPACT FACTOR: 1,086

CiteScore 2018: 1.48

SCImago Journal Rank (SJR) 2018: 0.391
Source Normalized Impact per Paper (SNIP) 2018: 1.141

Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 500 150 22
PDF Downloads 187 120 16