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ABSTRACT

Assuming independently but identically distributed sources, the traditional DOA (direction of arrival) estimation 
method of underwater acoustic target normally has poor estimation performance and provides inaccurate estimation 
results. To solve this problem, a new high-accuracy DOA algorithm based on sparse Bayesian learning algorithm is 
proposed in terms of temporally correlated source vectors. In novel method, we regarded underwater acoustic source 
as a first-order auto-regressive process. And then we used the new algorithm of multi-vector SBL to reconstruct the 
signal spatial spectrum. Then we used the CS-MMV model to estimate the DOA. The experiment results have shown 
the novel algorithm has a higher spatial resolution and estimation accuracy than other DOA algorithms in the cases 
of less array element space and less snapshots.
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INTRODUCTION

With the further development of ocean exploration, 
the DOA estimation based on micro-underwater location 
platform (such as UUV, unmanned underwater vehicle)[1,2] 
has aroused great interest in this particular field or branch. 
Micro-platform is characterized by more flexibility and higher 
safety, which is the key to moving node in underwater sensor 
networks. 

However, the traditional DOA technology, such as beam-
forming [3], the Capon’s method [4] and the methods like 
MUSIC [5], can’t be perfectly combined with the micro 
underwater positioning platform due to the restrictions on 
platform size and load. In recent years, DOA estimation based 
on compressed sensing theory[6] (CS) has been an active part 
in this particular field. In[7], a compressive beam-forming 
method for DOA estimation was proposed, and this approach 
does not be limited by Nyquist sampling theorem, but it is 
susceptible to signal correlation. In [8], a kind of spatial 

compressive sampling for underwater acoustic target is applied 
to DOA estimation, the method increases the DOA estimation 
accuracy in the cases of less snapshots and less array elements. 
Through a further research of CS, the signal reconstruction 
by compressive measurements has been studied from the 
perspective of Bayesian. In [9], the author proposed Bayesian 
compressive sensing for DOA determination. By adopting 
the idea of multitasking learning, it avoids the array output 
covariance matrix designing and reduces the computational 
complexity. In[10], an efficient DOA estimation approach was 
proposed via sparse Bayesian learning, the present approach 
solves the sparse DOA estimation problem in real domain 
by making good use of the special geometry of the uniform 
linear array. This method provides higher spatial accuracy 
and lower computational complexity. However, the algorithm 
mentioned above is based on the hypothesis that the signal 
sources are mutually independent, that is to say, equally 
distributed. In this case, the spatial structure of the source 
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signal is solely taken into account, without including the 
time-correlation properties of the signal source. According 
to current scientific knowledge, a wide range of signals, 
including biomedical signal, voice signal, geophysical and 
underwater acoustic signal, are, to a limited extent, time-
dependent. When the underwater target may be move quickly 
during the time of continuous observation, the continuous 
snapshots would have correlation between them, which will 
degrade the estimation precision. If the priori knowledge of 
that signal is applied to the DOA estimation model, a more 
effective estimation will be obtained. Then we propose a 
new method based on SBL[11,12,13] for underwater acoustic 
target, which can solve the problem to get more performance. 
Furthermore, considering MacKay’s fixed-point method[14], 
a fast DOA estimation method based on sparse Bayesian 
learning is proposed. 

In order to utilize the correlation of source data, the 
algorithm assumes the correlation as a first-order auto-
regressive time process, which the structure sparsity of signal 
can be fully applied to DOA estimation model. In addition, 
the CS MMV−  model[15] is established to model the DOA 
with the correlation. Finally, Muti-vectors Sparse Bayesian 
Learning has been applied to acquired the signal space 
spectrum by utilizing the structural sparsity. The simulation 
results have shown that the novel algorithm that we proposed  
has a higher spatial resolution  than many algorithms in the 
cases of less array elements and less snapshots, which fits 
well into the micro-platform, such as unmanned underwater 
vehicle.   

PROBLEM STATEMENT

In this paper, we consider M narrow-band far field 
static sources with unknown DOAs 1 2{ , , ..., }Mθ θ θ  
imping on a uniform linear array (ULA), consisting of N
( )N M>  identical sensors with inter-sensor spacing d
(half-wavelength), which is described in Fig.1. The received 
complex signal data is represented as:

1( ) ( ) ( ) ( ) { ,..., }Ly t A x t e t t t tθ= + ∈            (1)

where 1 2( ) [ ( ), ( ),..., ( )]MA a a aθ θ θ θ= is the matrix of the 
steering vectors whose m th−  column is given by ( )ma θ  

1[ , ..., ]Mθ θ θ=  is the vector of unknown source location, 
( )y t is the t th− observed snapshot, ( )x t is the t th−  

snapshots of the unknown source arriving signals, ( )e t
is the t th− snapshot of the additive spatial white noise, L

represents the number of snapshots. Gathering the multiple 
snapshots the model (1) can be rewritten as:

( )Y A X Eθ= +                                (2) 

where .1 .2 .[ , , ..., ] N L
LY y y y ×∈   is the observation matrix 

with L  measurement vectors. .1 .2 .[ , , ..., ] M L
LX x x x ×∈ 

is the unknown source matrix. ..1 .2[ , ,..., ] N L
LE e e e ×∈   

is the spatial white noise with zero mean and unknown 
variance 2σ . 

To formulate the DOA estimation problem into SBL 
approach, uniformly we divide underwater acoustic target 
angle space into K N M> possible angles of arrival and 
construct a redundant matrix of K atoms relating to the array 
responses of the respective angles of arrival (Fig.2). Then the 
transposed matrix )(θA  can be expressed as:

1 2[ ( ), ( ),..., ( )]Kφ θ φ θ φ θΦ =                    (3)                           

Then the model (2) can be reformulated as:

Y X E= Φ +                                    (4)                                      

So, the estimation problem turns out to be that of recovering 
the sparse signal vectors 1KX ×∈  . Since the problem is 
linear against to the unknown X , and the solution is sparse 
in the spatial domain, the SBL theory can be properly applied.

Fig.1 Sketch of the reference scenario: uniform linear array and impinging 
signals.

Fig.2 The angle space sparsity model of underwater acoustic target 
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UNDERWATER ACOUSTIC TARGET DOA 
ESTIMATION METHOD BASE ON SPARSE 

BAYESIAN LEANING
Usually, we make the hypothesis that the multiple 

measurement vectors have the same sparsity structure, but 
unknown. So the multiple measurement vectors could be 
stacked based on space structure. The support of each source 
vector is slowly time-varying, we can utilize the concatenate 
of MMV models to approximate this scenario. In fact, the 
underwater acoustic target signal is a kind of signal with 
temporal structure, so each signal source satisfies an AR(1) 
model given by:

, 1 , ,1 , 1,..., ; 1,...,i j i j i jX X n i K j Lβ β+ = + − = =     (5)

where ( 1,1)β ∈ − is the AR coefficient, and we assume 
, ~ (0, )i k in N γ  and , ~ (0, )i k iX N γ . A value of zero results iγ  

in a row with zero entries promoting sparsity.  Obviously, if 
 , the MMV model becomes the one with i.i.d sources. 

If 1β = ± , the multiple measurement vector (MMV) model 
is equivalent to the single measurement vector (SMV) model 
in terms of recovery performance.

With the AR(1) modeling assumption, the joint distribution 
of . 1 2[ , ,..., ]i i i iLX X X X=     is given by

.( ; , ) ~ (0, ), 1, 2,...,i i i i iX B N B i Kρ γ γ =           (6)                

where B is defined as:
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where iγ  is a nonnegative hyper-parameter controlling the 
row sparsity of X  as in the basic SBL. When 0iγ = , the 
associated .iX becomes zero. iB  is a positive definite matrix 
that captures the the correlation structure of X  and needs 
to be estimated. Note that in contrast to the original SBL 
framework, the BSBL framework models is the temporal 
structures of sources in the prior density via the matrices 

( 1,..., )iB i M= .The covariance matrix in the density of 
X  is i iBγ .

A s su m i ng ( )T NL Iy vec Y R ×= ∈ , LD I= Φ⊗ ,
( )T ML Ix vec X R ×= ∈ , ( )Te vec E= , we can propose 

the model of block-spare Bayesian learning framework of 
DOA as follows: 

y Dx e= +                                        (8)

Assuming that the noise e is independent and has the 
Gaussian distribution as:

   ( ) (0, )ie Nρ λ                               (9)                              

where ie  is i th− element in e , λ  is variance, for the block 
model (8), the Gaussian likelihood is:

( ; ) ~ ( , )y xy x N Dx Iρ λ λ                      (10)                      

The prior for X  is given by 

0( ; , , ) ~ (0, )i i xx B i Nρ γ ∀ ∑                   (11)                   

where 0Σ  is block diagonal matrix given by (12) with many 
diagonal block matrices being zeros. 

     
1 1

0

K K

B

B

γ

γ

 
 Σ =  
  



                        (12)                   

Using the Bayesian rule, the posterior distribution of x  
can be expressed as a multivariate Gaussian distribution:

( ; , , , ) ( , )i i i x x xx y B N uρ λ γ ∀ = Σ              (13)             

with the mean vector

1 T
x xu D y

λ
= Σ                                   (14)                              

and the covariance matrix

   

1 1
0

1
0 0 0 0

1( )

( )

T
x

T T

D D

D I D D D
λ

λ

− −

−

Σ = Σ +

= Σ −Σ + Σ Σ

             (15)             

Then the DOA problem is shifted to estimate all the 
hyper-parameter vectors , , ,i i iBλ γ ∀ , when given all the 
hyper-parameters, we can obtain the maximum a posterior 
probability estimate of x .

* 1 1
0

1
0 0

( )

( )

T T
x

T T

x u D D D y

D I D D y

λ

λ

− −

−

= Σ +

= Σ + Σ



               (16)                 

HYPER-PARAMETERS ESTIMATION   

The ways of learing the matrices have  different algorithms. 
In this section, we will discuss the learning of these 
hyper-parameters. 

To find the hyper-parameters 1{ , ,..., , }M Bλ γ γΘ = , 
Maximization ( ; )yρ Θ with respect to Θ  can be done via 
Expectation-Maximization(EM) method. This is equivalent 
to minimizing log ( ; )yρ− Θ , yielding the effective cost 
function:
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1

( ) 2 log ( ; ) ( , , , )

log

i i i

T
y y

L y x x B dx

y y

ρ λ ρ γ
−

Θ − ∀

= Σ + Σ

∫

   (17)           

where 0
T

y I D DλΣ + Σ .
There are two ways to minimize ( )L Θ  with respect to 

γ  . First, we can minimize this expression over γ  using 
EM method. Then we can obtain the learning rule for γ :

1[ ( ( ) )] , 1,...,
i i i T
x x x

i
Tr B u u i K

L
γ

− Σ +
← =            (18)             

Second, at the expense of proven convergence, we may 
instead optimize (17) by taking the derivative with respect 
to γ  , then letting the derivative equal to zero and following 
MacKay’s fixed point approach, we have:

1

1

( ) , 1,...,
( ) /

i T i
x x

i i
x i

u B u i K
L Tr B

γ
γ

−

−← =
− Σ

          (19)                  

For the other two hyper-parameters ,B λ , we also use EM 
method to solve the learning rule. They are given by:            

    
1

( )1 i i i TK
x x x

i i

u uB
K r=

Σ +
← ∑                   (20)                            

2 1
02

[ ( )]x xy Du K L Tr
M L
λ

λ
−− + × − Σ Σ

←
×

            (21)              

For convenience, we first list the conclusions of MSBL(Multiple 
SBL) algorithm.

1 11( )T
x λ

− −Ξ = Γ + Φ Φ                          (22)                            

1( )T TX I Yλ −= ΓΦ +ΦΓΦ                 (23)                         

where Γ  is defined as diag(γ ).
According to the conclusions of MSBL algorithm, we can 
find that the matrix operations have lower dimension in this 
algorithm. So we attempt to achieve similar complexity by 
adopting the following approximation. And in the following 
section, we can use the following approximation to simplify 
the learning rule of hyper-parameters.

1 1
0

1 1

( ) ( ( ) )

( )

T T
ML ML

T
ML

I D D I B

I B

λ λ

λ

− −

− −

+ Σ = + ΦΓΦ ⊗

≈ +ΦΓΦ ⊗
           (24)          

 
Using the same approximation (23) and following the 

equation (15), the xu in (18) can be expressed as 

          

  (25) 

Then we can transform the iγ  learning rule (18) to the 
following form according to the above analysis.

   1
. .

1 ( )T
i i i x iiX B X

L
γ −← + Ξ                        (26) 

Similarly, we can transform the iγ  learning rule (19) to the 
following form：

1
. . ,

(1 / )

T
i i

i
ii i

X B X i
L

γ
γ

−

← ∀
−Ξ

 

                      (27)                         

Based on the approximation (25), we can simplify the B  
learning rule (20) to the following form.

. .

1

( )1 TK
x ii i i

i i

B X XB
K γ=

Ξ +
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                        (28)                          

To increase the robustness, we use the rule below:

F
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B
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= +∑
 

           (29)                  

where η  is a positive scalar. This regularization item in B  
ensures that B  is positive definite.
Similarly, we simplify the λ  learning rule (21) as follows:

2 1
02

2 1
02

2

1 1

2 1

[ ( )]

( )]

1 [( )( )

(( ) )( )]
1 [ ( ) ]

x x

T
x y

T

F

T

T T

F

y Du K L Tr
M L

y Du Tr D D
M L

Y X Tr B I
M L M L

I B I

Y X Tr I
M L M

λ
λ

λ

λ

λ
λ λ

−

−

− −

−

− + × − Σ Σ
←

×

− + Σ Σ
=

×

≈ −Φ + Γ⊗ Φ ⊗
× ×

+ΦΓΦ ⊗ Φ⊗

= −Φ + ΦΓΦ +ΦΓΦ
×





       
(30)
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According to the above theory described, the new 
algorithm process aims at obtaining the maximum posterior 
probability estimation of signal sources by solving the 
hyper-parameters’ value, then it can get the estimation of 
target azimuth. According to the derivation of the above 
theories, we can summarize the algorithm implementation 
steps as table 2.

SIMULATION RESULTS

In this section, several simulation schemes for the 
underwater acoustic target DOA estimation algorithm are 
proposed for a detailed discussion. 

We consider a uniform linear array of 20M = identical 
sensors separated by half a wavelength of narrowband 

underwater acoustic signals. Three narrowband underwater 
acoustic target signals in the far-field impinge on this array 
from different DOAs. Here we simulate three sources at -20o, 
-18o and 20o with SNR of 10dB , and all the signals were 
AR(1) processes with the common AR coefficient 0.8β = . 
The number of snapshots is 100L = , squeezed number is 

10M =  and the number of potential locations is 361K = .

THE FEASIBILITY ANALYSIS OF OUR PROPOSED 
ALGORITHM  

Fig.3 shows the simulation results of spatial spectrum, 
where there are more than one  target. Comparing them we 
can conclude that Capon’s method has better performance 
when array elements are 40. Our proposed methods can 
always localize the sources. From the Fig.3(c) and Fig.3(d), the 

Tab. 1 Symbol list 

Symbol implication Symbol implication

M the number of narrow-band far field 
static sources iγ

a nonnegative hyper-parameter

N the number of sensors iB a positive definite matrix

d inter-sensor spacing y )( TYvec

θ the vector of unknown source location x )(
~

TXvec

( )θA the matrix of the steering vectors e )( TEvec

( )y t the t th− observed snapshot
0Σ block diagonal matrix

( )x t the t th− snapshot of the unknown 
arriving signals

xu the mean vector

( )e t the t th− snapshot of the additive 
spatial white noise

xΣ the covariance matrix

L the number of snapshots *x the maximum a posterior probability estimate of 
x

Y the observation matrix Θ the hyper-parameters

X the unknown source matrix )(ΘL the effective cost function

E the number of discreting the 
underwater acoustic target signal space xΞ the conclusions of MSBL(Multiple SBL) algorithm

K the number of discreting the 
underwater acoustic target signal space Γ diag(γ )

~
X the sparse signal vectors

η
a positive scalar

β the AR coefficient
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traditional two methods failed to resolve the closely spaced(5o 

separation) sources due to the Rayleigh limit, regardless of 
the array element spacing. However, our algorithms are still 
having a very high resolution, with two sharp spectral peaks. 
In Fig.3(c) and Fig.3(d), the number of sources was increased 
to 4. When the array spacing d is larger enough, Capon’s 
method and Beam-forming can approximately locate the 
sources. But these two traditional algorithms have strong 
bias when the array spacing is decreased to 0.2. From fig(a) 
to fig(f), the proposed methods always get the sharper peaks 
and distinguishes the sources clearly. We can demonstrate 
that the proposed method gets the underwater acoustic target 
DOA estimation is feasible. 
a)

b)

c)

d)

e)

Tab. 2 Algorithm Introduction

Initialization

1. Set : 1λ = , : 1γ = .
2. Hyper-meter B is setted to the M order unit array with 
the main diagonal’ value of 1 , where M is the number of 
single sources. 

Repeat

3. Compute the posterior moments xu  and xΣ  using (14) 
and (15).

4. Update the learning rule of , , Bλ γ  using EM rule or the 
faster fixed point rule with respect to γ . 

5. while three hyper-meters , , Bλ γ  convergence to a fixed 
point.

6. Calculate the value of * [ ; ]xu E x y Θ , given that γ  

is sparse, the resultant estimator *
xu  will necessarily be row 

sparse.

7. If given the value of *
xu , then we can find out the value 

of *x . Based on the maximum posterior probability *x of 
underwater acoustic signal source x , we can restore the 
underwater acoustic target source signal and complete the 
underwater acoustic target DOA estimation.  
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f)

Fig.3 Spatial spectrum obtained by different algorithms, SNR=10dB,L=100.
(a)Temporally correlated sources at 5o and 10o, array spacing d=0.5,array 

elements N=40.(b)Four temporally correlated sources, array spacing 
d=0.5,array elements N=40. (c)Temporally correlated sources at 5o and 10o, 

array spacing d=0.5,array elements N=20. (d) Temporally correlated sources 
at 5o and 10o, array spacing d=0.2, array elements N=20. (e) Four temporally 

correlated sources, array spacing d=0.5, array elements N=20. (f) Four 
temporally correlated sources, array spacing d=0.2, array elements N=20.

RECOVERY ABILITY FOR DIFFERENT ALGORITHMS 
AT DIFFERENT NOISE LEVELS

The RMSE with SNR simulation results of the proposed 
algorithms(TMSBL and TMSBL-FP) were showed in Fig.4 
comparing with two traditional algorithms and CS algorithm, 
Capon’s ,beam-forming and CS-L0 method In Fig.4(a), 
the snapshots number is fixed at 100, and in Fig.4(b), the 
snapshots number is fixed at 200. The results in Fig.4(a)-(b) 
show that TMSBL-FP algorithm achieve super resolution 
at the lowest SNR , and the TMSBL algorithm can also 
get better performance at the same SNR. Their RMSE are 
also smaller than Capon’s method and beam-forming at 
any different SNR. Comparing with the CS-L0 algorithm 
based on CS. The simulation results show that the proposed 
algorithm also has a better estimation performance than 
that of [8]. But the algorithm’s performance doesn’t have 
more obvious advantages in the estimation precision than 
those of the algorithm of [8] if the signal is not the type of 
‘time-correlation structure sparsity’.

a)

b)

Fig.4 The RMSE with SNR simulation results of the proposed 
algorithms(TMSBL and TMSBL-FP)

THE COMPUTATION TIME FOR DIFFERENT 
ALGORITHMS

Tab. 3 The time of these algorithms for achieving the DOA estimation

Time(s) 0.063467427 0.063507871 1.574971 0.062059304

Algorithm Capon Beam-
forming

TMSBL TMSBL-FP

We compare the computation time for different algorithms. 
As can be seen in tab. 3, Capon’s method and Beam-forming 
algorithm used nearly the same time as TMSBL-FP algorithm, 
and TMSBL-FP algorithm turns out to be the slowest. 
However, it is important to indicate that the performance 
of Capon’s method and Beam-forming are much worse 
than algorithms of TMSBL or TMSBL-FP if the source is 
temporally correlated.

CONCLUSIONS

In this paper, it is shown that existing DOA estimation 
algorithms have poor performance. To solve these problems, 
a novel method and the faster algorithm of DOA estimation 
is proposed to realize the real time. The simulation 
experiment results show that the proposed novel algorithm 
has more superior performance than many other algorithms 
considering the data correlation as the structured sparsity. 
This method is suitable for underwater acoustic target DOA 
estimation in micro platforms (i.e. UUV) due to the fact that 
the method needs less array elements and less snapshots to 
localize the quick movement underwater target.
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