
POLISH MARITIME RESEARCH, No S2/2017 39

POLISH MARITIME RESEARCH Special Issue 2017 S2 (94) 2017 Vol. 24; pp. 39-44
10.1515/pomr-2017-0062

FUZZY METHOD AND NEURAL NETWORK MODEL
PARALLEL IMPLEMENTATION OF MULTI-LAYER NEURAL

NETWORK BASED ON CLOUD COMPUTING FOR REAL TIME
DATA TRANSMISSION IN LARGE OFFSHORE PLATFORM

Zhang Hu, Ph. D.
Wei Qin, Ph. D.
School of Information Engineering, Wuhan University of Technology,Wuhan, 430074, China

ABSTRACT

With the rapid development of electronic technology, network technology and cloud computing technology, the current
data is increasing in the way of mass, has entered the era of big data. Based on cloud computing clusters, this paper
proposes a novel method of parallel implementation of multilayered neural networks based on Map-Reduce. Namely
in order to meet the requirements of big data processing, this paper presents an efficient mapping scheme for a fully
connected multi-layered neural network, which is trained by using error back propagation (BP) algorithm based on
Map-Reduce on cloud computing clusters (MRBP). The batch-training (or epoch-training) regimes are used by effective
segmentation of samples on the clusters, and are adopted in the separated training method, weight summary to achieve
convergence by iterating. For a parallel BP algorithm on the clusters and a serial BP algorithm on uniprocessor, the
required time for implementing the algorithms is derived. The performance parameters, such as speed-up, optimal
number and minimum of data nodes are evaluated for the parallel BP algorithm on the clusters. Experiment results
demonstrate that the proposed parallel BP algorithm in this paper has better speed-up, faster convergence rate, less
iterations than that of the existed algorithms.

Keywords: Parallel implementation; Multi-layer neural network; Cloud computing

INTRODUCTION

With the rapid development of electronic technology,
network technology and cloud computing technology, the
current data is increasing in the way of mass, has entered
the era of big data. Real world data, such as digital images,
the gene expression patterns, face data set or web page text,
usually have the characteristics of high dimension and
large data volume. For traditional technologies of artificial
intelligence and pattern recognition and so on, are all faced
with the challenge of how to implement the data processing
in the era of big data. For example, in the classification of
a large scale of face data sets, a computer or workstation is
very difficult to adapt to the actual requirements because of
the lack of speed and storage capacity. Therefore, it is very

necessary to study how to implement the technologies of
artificial intelligence and pattern recognition based on multi-
computer clusters in large data environment. When using
the neural network in artificial intelligence to deal with the
related data, if the number of size of training samples is not
large, generalization ability and running time of single neural
network are relatively ideal. However, with the increase of
the identification number of categories, the structure of the
neural network will also become more complex, lead to neural
network training time become longer, convergence speed
become slower, being easy to fall into local minimum and
have the worse generalization ability and so on. In order to
eliminate these problems, it can consider designing Hybrid
Neural Networks (HNNs) composed of multi single neural
network to replace the complex single neural network. In

POLISH MARITIME RESEARCH, No S2/201740

addition, it proposed a novel semi-supervised learning
algorithm – deep learning approach using Deep Belief
Network embedded with Soft max regress (DBNESR) as
a classifier.

With the advent of “big data” era, the traditional
standalone serial-based training machine learning has been
difficult to meet the needs of “big data” applications. To this
end, this paper discusses and has realized neural network
learning algorithm based on cloud computing and an affective
computing research based on cloud computing clusters.
Namely with the help of a cloud computing platform through
network circulation and combination to provide computing
power as super computer to realize parallel training and
classification recognition application of RBF neural network
and the relevant algorithm, so that to make neural network
and the relevant algorithm can study and process mass, high-
dimensional data by cross-platform.

OVERVIEW ON CLOUD COMPUTING

Cloud computing involves a large number of computers
connected through a communication platform such as the
Internet. It is similar to utility computing. Cloud computing
is also defined as a large-scale distributed computing model.
Here, the cloud providers and users can have their own private
infrastructure, and several types of services can be provided
to clients using virtual machines hosted by the providers. It
in- eludes utilization techniques for improving the efficiency
of the system. These include: Network Utility, Disk I/O utility,
CPU utilization of a system as well as available memory for
performing operations. Cloud Computing is a term that
renames some common technologies and techniques that
we know in IT. It can be understood to mean data center
hosting [1-2]. The principal concept of computing goes back
to the 1950s.

At this time, large-scale mainframe computers became
available, accessible via thin clients or terminal computers.
These were referred to as “static terminals” because they were
used for communications but had no internal processing
capacities. To make a more resourceful use of high cost
mainframes, a technique evolved which allowed multiple
users to share physical access to the computer from multiple
terminals just as the CPU time. Cloud computing providers
offer their services in several fundamental models. These
models include: infrastructure as a service (IaaS), platform
as a service (PaaS), and software as a service (SaaS). Here,
IaaS is the simplest and highest model which extracts details
from the lower models [3-5]. It shows the architecture of cloud
computing layers. Additionally, there are three layers that are
not provided as user services.

This includes things like the processing power resources
on each node and bandwidth resources on the links that the
embedding must fulfill. For example, to run an experiment,
a researcher may need 1 GHz of CPU for each virtual node and
10 Mbps for each virtual link. Added to these requirements
are the constraints on location and any link propagation

delay problems. In another example, a gaming service needs
virtual nodes in many cities, as well as virtual links with
very small propagation delays. These combinations of node
and link constraints would make the embedding problem
computationally difficult to approach and solve [6-7]; figure 1
show a simple virtual network request and how it was mapped
on a substrate network.

PARALLEL IMPLEMENTATION MODEL
AND BP ALGORITHM BASED ON CLOUD

COMPUTING
Parallel implementation is a worldwide cooperation of

developers and cloud computing technologists producing the
universal open source cloud computing platform for public
and private clouds. The Parallel implementation project aims
to bring solutions for all types of clouds. The goal here is to
make it simple to implement, scalable, and rich in features.
Open- Stack technology contains a series of unified projects
working together to deliver various components for cloud
infrastructure solutions. Over 200 companies joined the
Parallel implementation project. Some of these companies
included leading IT Companies like Arista Networks, Brocade
Communications Systems, AT&T, AMD, Canonical, EMC,
Ericsson, FS Networks, Hewlett-Packard, Go Daddy, Cisco,
Dell, Groupe Bull, IBMNEC, NetApp, Nexenta, Rackspace
Hosting, Red Hat, Inktank, Intel, SUSE Linux, Oracle,
VMware and Yahoo. This technology consists of a series
of interrelated projects which control pools of processing,
storage, and networking resources. It is able to be managed
and provisioned through an interface dashboard. In the last
few years, Parallel implementation has evolved from just
a joint venture between NASA and Rackspace to build cloud
infrastructure on product hardware, to ad hoc development
projects for the factory industry.

In 2012, the parallel implementation community was
deeply involved in core technology development, as well as
deploying and managing parallel implementation projects
[8]. Currently, parallel implementation consists of seven
core components: Compute, Object Storage, Block Storage,
Network, Dashboard, Image Service and Identity. Few studies
or research has conducted to test the usage and the benefits
of implementing virtual network embedding strategies
within the Parallel implementation cloud operating system
architecture. Currently, there is much need for this type of
research since Open-Stack is a new and emerging Internet
technology, and as such, is facing a resources al- location
problem. Parallel implementation is the leading cloud
computing technology and it has now received attention
from members of the scientific community.

In this section, I provided a brief introduction to Parallel
implementation, including its components, development,
and research status. I also provided a brief introduction into
the current research and study implications for connecting
Parallel implementation and virtual networking. In this
paper, I will discuss the virtual network embedding problem

POLISH MARITIME RESEARCH, No S2/2017 41

and the existing strategies for solving this problem. Parallel
implementation is a cloud operating platform which controls
resources of computing, networking and storage throughout
a datacenter, in which all are managed through a dashboard
that gives administrators control and authorizing their users
to use resources through a web interface (dashboard). The
goals of the Parallel implementation originality are to sup-
port cloud services and allow businesses to build cloud
services in their own data centers. Parallel implementation
is available under the Apache 2.0 license freely, referred knows
as “the Linux of the Cloud” and also comparing to Eucalyptus
and the Apache Cloud Stack projects. Parallel implementation
has a modular architecture that currently has three main
components: compute, storage and image service [9-10].

Parallel implementation Compute (Nova) – a controller
for cloud computing and managing large networks of virtual
machines (VMs) is important. Parallel implementation Object
Storage – a storage system that provides support for both block
storage and object storage is also important. Image Service –
Service which provides discovery as well as registration for
visual disk images. Among many Parallel implementation
services and projects (the list is growing with every re-lease),
only Compute is considered within this paper. Compute or
“Nova” is the service responsible for providing a compute
provisioning function to clouds. It can be considered as
a management layer which operates on top of a free option of
supported hypervisors, exposing a REST API for the purpose
of management and provisioning. It consists of a set of service
binaries that work together to accomplish one common goal.
They all interact directly through messaging and through
a shared state which is stored in a central database. This is
shown in figure 2. To interact with other services, we can
directly target the REST API or use the python language
provided by in the python-Nova client library. This also
includes a command-line client. Other interfaces, such as
the web-based Dashboard, use this as client libraries for
interacting with the different Parallel implementation services
as well. Pro-visioning requests, which enter the API and then
pass the initial authorization and verification, will step before
being sent out to the Nova- scheduler to decide which one of
the available compute nodes should be handling the request.
Our main focus of this section is the customization of the
Nova Parallel implementation main component. The actual
code for the Nova services are in. /nova and the corresponding
unit tests are in the related directory under ./nova/tests. The
following represents a short explanation of the Nova source
directory structure.

The basic equation of key algorithm is shown as the
equation (1) [11-12]:

(,) (1)kN sk Key← (1)

This formula is used to generate file checksum parameter
which is denoted by:

{0,1} ; { , , };
{ , };

kr sk e d r
Output N sk
← ←

(2)

The Euler function is:

() (1)(1)N p qφ = − − (3)

Then choose an integer e to satisfy the following equation 4:

{1 ()
gcd(, ()) 1

e N
e N
φ
φ

< <
=

 (4)

Then finally export (N, sk) in Tag algorithm, we can get
the optimization equation (5):

0 2 1(, ,...) (, ,)nT T T Tag pk sk m− ← (5)

The formula generates labels for each file block.

(0; 1;);for j j n j= ≤ − + + (6)

{ *(1);

[()*] mod };
j i

c
j j

W r j T

h W m N

= +

=
 (7)

0 2 1(, ,...);nOutput T T T − (8)

And local fractional integral of ()f x defined by Eq.9.

()

1

j j0 0

1() ()()
(1)

1 lim ()()
(1)

b

a b a

j N

t j

I f t f t dt

f t t

α
α

α

α

α

= −

∆ →
=

=
Γ +

= ∆
Γ +

∫

∑
 (9)

In which,

() ()
()

() ()
ik i
T
k

T t
T

t τ
∇ ∇

∇ =
∇ − ∇

,
0

=
0 0
ikδJ ,

(,)
(,)

(,)
ku x

f x
x
ω

ω
ϕ ω

=
 (10)

()ik j ijkl lT C∇ = ∂ ∂
 ,

()i j ijk kt e∇ = ∂ ∂
 , () i ik kτ η∇ = ∂ ∂

Consider an infinite situation; we have the equation (5)
in the following:

0 0
0

0 0
ijkl kij
T

ikl ik

C e
e η

=
−

L (11)

Consider the propagation, instead the equation (11) with
the following form:

 0 1(x) (x)η η η= + , 0 1(x) (x)ρ ρ ρ= +

 (12)

POLISH MARITIME RESEARCH, No S2/201742

Then we have equation (13) to (14):

1 0C C C= − , 1 0e e e= − (13)

1 0η η η= − , 1 0ρ ρ ρ= − (14)

For such kind of material, general form of equation (10)
is expressed as following equation (15-17):

2

2 2 2
0

2

2 2 2 2 2 2

1(,) [

1 1]

ik ik

i k i k

G k
k

k k m m
k k k

βω θ
ρ ω β

β
α β β

⊥

⊥

=
−

+ − + − − −

(15)

20 2
15

0 2 2 0 2 2
11 0 11

1 1 1(,)ik
ek

k k
βω

η ρ ω η β
⊥

⊥

= − + −

g (16)

20 2
15

2 0 2 2
0 11

1(,)i i i
ek m

k
βγ ω

ρ ω η β
⊥

⊥

= −

 (17)

Parallel implementation consists of a modular architecture
along with various codes for the components. It also has several
shared services which extend the three main components
(compute, storage and networking). This makes it much easier
to implement and operate on your own cloud. These services
integrate the Parallel implementation components with each
other along with external systems to deliver an integrated
experience for users.
1. Parallel Implementation Computer nova is a cloud

computing controller (considered the IaaS system’s main
component). It uses Python language as well as many
external 1ibraries like Event let, Kombu (for AMQP
communication), and SQL Alchemy (for database access).
Nova’s architecture is designed to be scaled horizontally
on substrate hardware with no additional hardware or
software requirements. It simultaneously pro- vides the
ability to integrate with current legacy systems and third
party technologies. Nova is designed to manage pools
of computer resources and it can work with almost all
available virtualization technologies. It can also work with
high-performance computing (HPC).

2. Parallel Implementation Object Storage (Swift) is a scalable
storage system in which objects and files are written
to multiple disks in the data center servers. Parallel
implementation will ensure data replication and integrity
across the cluster. Storage clusters scale simply by adding
new servers. If a server or a hard driver fails, Parallel
implementation replicates its content to new locations in
the cluster. Due to the fact Parallel implementation uses

software logic to ensure data replication and distribution
across different devices, inexpensive servers and hard
drivers can be used.

3. Parallel Implementation Block Storage (Cinder) provides
the software to create and man- age a service that
provisions storage in the format of block devices known
as Cinder volumes. Cinder provides persistent storage to
guest virtual machines (instances) which are managed
via Parallel implementation Compute. It can also be used
independently with other Parallel implementation services.

4. Parallel Implementation Network (Neutron) provides
virtual networking service for the compute module. The
networking module can manage IP addresses which allows
for dedicated DHCP or IPs. Network module suits the
requirements of applications or user groups.

5. Parallel Implementation Dashboard (Horizon) gives users
and administrators an interface to access, automate and
provide cloud resources. The design makes it easy to plug in
as well use third party products and services. This includes
such things as monitoring, billing, and management tools.
The dashboard can be customized for service providers and
vendors who desire to use it. Dashboard is also a way to
interact with Parallel implementation software resources.

6. Parallel Implementation Image Service (Glance) provides
location and delivery for services for disks and server
images. It has the ability to snapshot and copies a server
image and stores it away. This is a something very useful
about the Parallel implementation cloud operating system.
The stored snapshots and images can be used to get servers
mining faster and more consistently. It also can be used
to catalog and store many backups.

7. Parallel Implementation Identity (Keystone) controls
the central directory of users mapped to the Parallel
implementation services and can access it. It works as
an authentication system across every part of the cloud
operating system and can be integrated with already
existing backed directory services such as LDAP. The
Keystone module supports many types of authentication,
including username and passwords credentials, as well as
AWS-style and token based systems.

Fig. 1. Virtual Network Embedding

POLISH MARITIME RESEARCH, No S2/2017 43

Fig. 2. Parallel implementation Compute architecture overview

EXPERIMENT AND DISCUSSION

The Hardware Layer and the Virtualization Layer are
operated by the cloud services provider, while the Client
Layer is provided by the end users. Basically, clouds can be
defined in three ways:
1) Private Clouds: where data and processes are managed

in the organization without security exposures and legal
require- menu;

2) Public Clouds: where a set of computers and computer
network resources, in which a service provider provide
resources (like storage and applications) is available to
the general public over the Internet;

3) Hybrid cloud: a combination of two or more clouds
(private, public and community) that remain different
entities but bound together. These provide the benefits
of multiple cloud models. Therefore, hybrid cloud means
the ability to connect, manage and dedicate services with
cloud resources. A hybrid cloud service crosses isolation
boundaries so it cannot simply be categorized as a private,
public or community cloud. Virtual network embedding
(VNE) has been a major challenge for future Internet
(FI). The problem of embedding virtual networks within
a substrate network is the main resource allocation in
network virtualization.
Parallel implementation Compute scheduler is also known

as the nova-scheduler service. It is responsible for mapping
instance requests onto the physical hosts named compute
nodes. Compute nodes will execute the nova-compute
service on top of a hypervisor. When the scheduler service
is launched, it will load a scheduler driver which holds the
actual scheduling logic and policies. A scheduler driver is
derived from a base driver class and implements interface.
A number of simple scheduler drivers are included in Parallel
implementation Nova. Advanced filters can be written as long
as they able to implement the required interface of the base
driver. In addition to defining the interface requirements, it
also holds some of the basic requirements which are needed by
every scheduler; this includes easy access to the global system

state and some utility methods used by most schedulers. The
figure 3 shows us the existing network and connected virtual
bridges. When entering the command to view virtual bridge
and virtual network port status we bet the figure 4.

Fig. 3. Obtain VN information

Fig. 4. Virtual bridge status

The target of the VNE problem is the allocation of virtual
resources in nodes and links. Therefore, it is divided in two sub
problems: first, Virtual Node Mapping (VNoM), where virtual
nodes are mapped in physical nodes; and second, Virtual Link
Mapping (VLiM), where the virtual links linking virtual nodes
have to be mapped on paths connecting these nodes in the
substrate network. Future Internet architectures have been
evolving to become based on the Infrastructure as a Service
(IaaS). This is a model that divides the role of current Internet
Service Providers (ISPs) into two new main roles: first, the
Infrastructure Provider on P which deploys and keeps the
network equipment operating; and second, Service Provider
(SP). Service provider (SP) is responsible for deploying various
network protocols and providing end to end services. For
example, Voice over IP (known as VoIP) can run on a virtual
network which provides anticipated performance.

This is done by provisioning dedicated resources and
employing routing protocols which can ensure fast recovery
from any equipment failures that might occur. On the other

POLISH MARITIME RESEARCH, No S2/201744

hand, online banking runs on a virtual network that pro-
vides security guarantees. This is done through addresses
and secure routing protocols. Making efficient usage of the
substrate resources demands effective techniques for visual
network embedding (a new virtual network mapping). The
VNE problem is extremely difficult for two main reasons, the
first of which is node and link constraints. Each VN request
has resource limitations.

CONCLUSION

For traditional technologies of artificial intelligence and
pattern recognition and so on, are all faced with the challenge
of how to implement the data processing in the era of big
data. For example, in the classification of a large scale of face
data sets, a computer or workstation is very difficult to adapt
to the actual requirements because of the lack of speed and
storage capacity. Therefore, it is very necessary to study how
to implement the technologies of artificial intelligence and
pattern recognition based on multi-computer clusters in large
data environment. When using the neural network in artificial
intelligence to deal with the related data, if the number of
size of training samples is not large, generalization ability
and running time of single neural network are relatively
ideal. Based on cloud computing clusters, this paper proposes
a novel method of parallel implementation of multilayered
neural networks based on Map-Reduce. Namely in order
to meet the requirements of big data processing, this paper
presents an efficient mapping scheme for a fully connected
multi-layered neural network, which is trained by using error
back propagation (BP) algorithm based on Map-Reduce
on cloud computing clusters(MRBP). Experiment results
demonstrate that the proposed parallel BP algorithm in
this paper has better speed-up, faster convergence rate, less
iterations than that of the existed algorithms.

BIBLIOGRAPHY

1. Bhandarkar S M, Wang X: Efficient parallel implementation
of the multi-layer perceptron on an SIMD mesh architecture.
Neural Parallel & Scientific Computations, Vol. 4, no. 1,
pp. 69-82, 1996.

2. Li X J, Li L: IP Core Based Hardware Implementation of
Multi-Layer Perceptrons on FPGAs: A Parallel Approach.
Advanced Materials Research, Vol. 433, pp.:5647-5653,
2012.

3. Kalaitzakis K, Stavrakakis G S, Anagnostakis E M: Short-
term load forecasting based on artificial neural networks
parallel implementation. Electric Power Systems Research,
Vol. 63, no. 3, pp.185-196, 2012.

4. Kim Y C, Shanblatt M A: Architecture and statistical model
of a pulse-mode digital multilayer neural network. IEEE
Transactions on Neural Networks, Vol. 6, no. 5, pp.1109-
1118, 1995.

5. Hikawa H: Frequency-based multilayer neural network
with on-chip learning and enhanced neuron characteristics.
IEEE Transactions on Neural Networks, Vol. 10, no. 3,
pp.:545-53, 1995.

6. Serpen G, Gao Z: Complexity Analysis of Multilayer
Perceptron Neural Network Embedded into a Wireless Sensor
Network. Procedia Computer Science, Vol. 36, pp.192-197,
2014.

7. Kumar A, Joshi H, P. S: Neural Network Approach for
Automatic Landuse Classification of Satellite Images: One-
Against-Rest and Multi-Class Classifiers. International
Journal of Computer Applications, pp.134, 2016.

8. Raza M Q, Khosravi A: A review on artificial intelligence
based load demand forecasting techniques for smart grid
and buildings. Renewable & Sustainable Energy Reviews,
Vol. 50, pp.1352-1372, 2015.

9. Ahmedalazzawi N: Automatic Recognition System of
Infant Cry based on F-Transform. International Journal
of Computer Applications, Vol. 102, no. 12, pp.28-32, 2014.

10. Druitt C M, Alici G: Intelligent Control of Electroactive
Polymer Actuators Based on Fuzzy and Neurofuzzy
Methodologies. Mechatronics IEEE/ASME Transactions
on, Vol. 19, no. 6, pp.1951-1962, 2014.

11. Francesquini E, Castro M, Penna P H: On the energy
efficiency and performance of irregular application
executions on multicore, NUMA and manycore platforms.
Journal of Parallel & Distributed Computing, Vol. 76,
pp.32-48, 2015.

12. Li Y, Tang X, Cai W: Play Request Dispatching for Efficient
Virtual Machine Usage in Cloud Gaming. IEEE Transactions
on Circuits & Systems for Video Technology, pp. 1-11, 2015.

CONTACT WITH AUTHOR

Zhang Hu, Ph. D.,
e-mail: 61525963@qq.com

tel.: 13343408090

School of Information Engineering
Wuhan University of Technology

Wuhan Hubei, 430074
China

