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ABSTRACT

One of the most promising new applications of remote observation satellite systems (RO) is the near-shore bathymetry 
estimation based on spaceborn multispectral imageries. In recent years, many experiments aiming to estimate bathymetry 
in optically shallow water with the use of remote optical observations have been presented. In this paper, optimal 
models of satellite derived bathymetry (SDB) for relatively turbid waters of the South Baltic Sea were presented. The 
obtained results were analysed in terms of depth error estimation, spatial distribution, and overall quality. The models 
were calibrated based on sounding (in-situ) data obtained by a single-beam echo sounder, which was retrieved from 
the Maritime Office in Gdynia, Poland. The remote observations for this study were delivered by the recently deployed 
European Space Agency Sentinel-2 satellite observation system. A detailed analysis of the obtained results has shown 
that the tested methods can be successfully applied for the South Baltic region at depths of 12-18 meters. However, 
significant limitations were observed. The performed experiments have revealed that the error of model calibration, 
expressed in meters (RMSE), equals up to 10-20% of the real depth and is, generally, case dependent. To overcome this 
drawback, a novel indicator of determining the maximal SDB depth was proposed. What is important, the proposed 
SDB quality indicator is derived only on the basis of remotely registered data and therefore can be applied operationally.
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INTRODUCTION

Satellite remote multispectral systems provide valuable 
large- and local-scale observations of optical and thermal 
properties of Earth’s surface. One of the most promising new 
applications of the remote observation satellite systems (RO) 
are near-shore bathymetry estimations. RO observations are 
an interesting approach because they can provide relatively 
low-cost information on shallow water bathymetry, compared 
to other known bathymetry retrieval techniques, such as Lidar 
scanning (LS), multibeam systems (MBS) and single-beam 
echo sounder (SBE). The above methods, particularly LS and 
MBS, provide high resolution and accurate data, but surveying 
in those cases is usually expensive and time consuming [1]
[2]. With the development of optical and thermal satellite 
sensors for land and sea observation imagers, new applications 
of RO arise. 

In recent years many experiments aiming to estimate 
bathymetry in optically shallow waters with the use of 
remote optical observation have been presented. Basically, 
two fundamental models of determining the bathymetry 

from optical imagery are defined, namely: the empirical 
optical band ratio transform algorithm proposed by Stumpf 
[3] and a more analytical approach proposed by Lyzenga 
[4, 5] and Philpot [6]. Both of these models assume that the 
radiation in optical bands is absorbed by water and reflected 
from the bottom. However, the scale of this process differs 
depending on the wavelength. Therefore, the ratio of the 
observed radiances of at least two optical bands is to be used 
to retrieve the information about the bottom depth. 

During this process, many factors constitute limitations 
of these methodologies. When the bottom reflectance and 
light attenuation of water is stable over the analysed area, 
depth estimates can be relatively easily made by modelling the 
depth of light penetration based on the amount of reflectance 
measured by the satellite. Having known the multiple visible-
wavelength spectral bands, the effects of seafloor reflectance 
variability and water turbidity can be reduced. However, 
water turbidity is still one of the most important factors in 
the process of obtaining satellite derived bathymetry (SDB).

Therefore, most of the experiments made in this area 
have focused on testing fields and datasets that satisfy the 
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abovementioned criteria. For instance, Sandidge and Holyer 
used the Airborn Visible/Infrared scanner to derive the 
bathymetry for waters of Florida, USA [7]. The observations 
of optically shallow waters near the Bahama islands were 
also analysed by Adler-Godlen [8], Sheng Ma [9], and others 
i.e. [10][11][12][13]. This paper presents optimal models of 
satellite based bathymetry derivation developed for relatively 
turbid waters of the South Baltic Sea. The research involved 
Sentinel-2 data, as well as log-ratio and analytical approaches 
making use of inverse transform optimization methods. The 
results obtained using these two models were then compared 
in terms of depth error estimation, spatial distribution, and 
quality. The model was calibrated on the basis of the sounding 
(in-situ) data obtained by a single-beam echo sounder. The 
calibration data was retrieved from the Maritime Office in 
Gdynia, Poland, which is the local entity of official Marine 
Administration in Poland.

METHODS

Bathymetry estimation from satellite observations involves 
extracting the bottom radiance from the measured water-
leaving reflectance. The reflectance R is defined as the ratio 
of the radiance leaving the water surface to the downwelling 
irradiance just above the water surface. It is a feature that 
describes light absorption related optical properties of the 
surface, as well as scattering properties of the constituents 
in the water, and bottom albedo and depth. The fundamental 
physical principle in the process of deriving bathymetry using 
satellite observations bases on the phenomena of light pass 
attenuation in the water column, and bottom reflection and 
scattering (Fig. 1).

Fig.  1. Physical principle of SDB model

As shown in Fig. 1, this principle can be divided into four 
basic components of the energy registered at the satellite 
sensor [14] which are: the bottom radiance LB, the subsurface 
volumetric radiance Lv, the specular radiance Ls, and the 
atmospheric path radiance LA. This can be written down as:

 (1)

where the radiance LTOA registered at the sensor includes the 
atmospheric scattering LA and the subsurface volumetric 
radiance Lv resulting from volume scattering in water 
and its organic/inorganic constituents (e.g. sediment and 
chlorophyll). The surface radiance LS is caused by the reflection 
of optical energy from the water surface, including possible 
sunglint effects. Finally, LB is the result of energy reflection 
from the seabed, which holds the information about bottom 
scattering characteristics and water depth. In this context, in 
order to derive the bottom depth from satellite observation, 
disaggregating the bottom and volumetric radiance from the 
total radiance is crucial. 

Basically, there are two fundamental models for obtaining 
SDB. Both of them apply mechanisms to remove Lp and 
specular effects, and minimize the variability of volumetric 
scattering effects [15][16]. In most approaches this is achieved 
by assuming that bottom radiance in fully deep water equals 
zero. Then, the total radiance (or reflectance) over optically-
deep water (L∞ or R∞), represents the combined effect of 
subsurface volumetric radiance, specular radiance, and 
atmospheric path radiance. After atmospheric and sunglint 
corrections, the deep-water radiance contains only subsurface 
volumetric radiance. Assuming that the subsurface volumetric 
radiance in shallow water and atmospheric absorption is the 
same as that in the adjacent deep water, the optically deep-
water radiance recorded by the remote sensor can be used to 
correct the subsurface volumetric radiance in shallow water. 

In order to minimize depth estimation errors, a possibly 
largest number of wavelength bands with smallest attenuation 
should be used. The maximal derivation depth is limited by 
water turbidity (caused by suspended sediments, chlorophyll, 
and organic particles) and the wavelength registered by the 
sensor. Therefore, the basic band used for SBD is blue light 
spectrum (440 to 540 nm) as it has the smallest attenuation 
and can penetrate water up to 30m in optimal conditions. 
Longer wavelengths (green and red) attenuate rapidly in 
water, as a consequence of which green light (500–600 nm) 
can penetrate to a maximum depth of approximately 15 m, 
red light (600–700 nm) to 5 m, and near infrared (700–800 
nm) to as little as 0.5 m [17]. 

OPTICAL BAND RATIO BATHYMETRY RETRIEVAL 
MODEL 

The first of the above described approaches [3], based on 
a log-ratio equation, is described by the following equation: 
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 (2)

where zest  is the satellite derived bathymetry depth, m0 and 
m1 are the coefficients of the model, and R(λi) and R(λj) are 
the remote sensing radiances for optical bands λi and λj. 
In this model, the bottom depth is estimated on the basis 
of light attenuation phenomena, as the attenuation of the 
incoming shortwave radiation varies spectrally. This effect 
can be observed in spectral bands. 

ANALYTICAL INVERSION MODEL

The local inversion model is derived directly from the 
simplified radiation equation for optically shallow waters (3): 

 (3)

where Ad is the upwelling spectral radiance directly reflected 
from the bottom (before interacting with the overlaying water 
column), k is the two-way attenuation coefficient, and z is 
the depth. In this context, the expression   represents 
the energy attenuation effect resulting from energy passing 
through the water column of known depth z. Assuming that 
the ratio of bottom reflectance between two spectral bands 
is constant for all bottom types within a given scene and the 
light attenuation variability caused by atmospheric effects is 
negligible for a given area, the depth estimated with the use 
of the following model can be expressed as:

 (4)

where N is the number of spectral bands, αi (i=1,2,...N) are 
the constant coefficients derived during model calibration, 
and L(λi)is the remote sensing radiance after atmospheric and 
sunglint corrections for spectral band λi. The use of natural 
logarithm in the expression makes the transformation linear 
to water depth and deepwater-corrected radiances of spectral 
bands.

MATERIALS

In this section, the description of input data for the 
algorithms used in the paper is outlined. The proposed 
algorithms utilize two types of input datasets, which are: 
multispectral imageries obtained from the Sentinel-2 satellite 
system that SDB is derived from, and the calibration dataset 
constructed from SBE surveys.

 SENTINEL-2 DATA

Sentinel-2 (S2) is a two polar-orbiting satellite system 
that is the continuation of the SPOT and Landsat series of 

multispectral missions. Its main objective is to deliver high-
resolution optical and thermal operational observations 
for land/sea monitoring, emergency response, and security 
services [18]. Sentinel-2 is part of the European Space Agency 
(ESA) Copernicus programme and its data is provided via 
dedicated data dissemination frameworks, such as SciHub 
[19] or national Copernicus mirror sites [20][21]. 

Sentinel-2 provides systematic coverage of the globe 
between 56°S to 84°N, with relatively high revisit frequency 
(every five days at the equator under the same viewing 
conditions). The spatial resolution for optical and NIR 
(865 ± 10nm) bands equals 10m x 10m per pixel. In the case 
of the analysed area, data is delivered via the UTM 34N 
projection grid. Sentinel-2 also delivers six NIR and SWIR 
bands with 20m x 20m spatial resolution and three 60m 
resolution bands in optical, NIR and SWIR ranges (Fig. 2).

The observation data from S2 is delivered by the mission 
Ground Segment, which provides processing schemes in 
four levels: 
– Level-0 (L0) – raw compressed geometrically registered 

data
– Level-1 (L1) – divided into A, B, C and C sub-stages. 

The stage L1C provides geocoded uncompressed TOA 
reflectance after radiometric calibration, data correction, 
and geometric refinement. 

– Level-2 (L2) – the stage can be performed with the use of 
dedicated processing software ([22][23]) and provides the 
bottom of the atmosphere reflectance.

Fig. 2. Sentinel-2 MSI optical band characteristics.

SOUNDING DATA

The data for SDB model calibration was delivered by the 
Maritime Office in Gdynia (MAG), which is part of national 
maritime authority in Poland. Its duties cover such activities 
as: ensuring and monitoring maritime safety and security in 
the scope of inspections carried out by Flag State Control and 
Port State Control, monitoring of ships’ traffic, sea routes and 
security of ship and port facilities, monitoring of ships’ routes 
and waterways, management of waters, maritime spatial 
planning, and others.
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In addition to the above stated duties, MAG performs 
systematic Polish coast bathymetry surveys with the aid of 
different survey techniques, including SBE, MBS, and Lidar 
scanning. The data for the presented research was retrieved 
from near-shore SBE surveys made in 2011. The testing site 
covers 12 km of the South Baltic coast (Fig. 3). 

Each survey is based on acoustic sounding profile depth 
measures, where each sounding within the profile is spaced by 
10-20m. Each profile is perpendicular to the coast and starts 
1800-2000m before the coastline, which corresponds to the 
bottom depth of about 15-20m. The profiles are parallel to 
each other and spaced by 500m along the coast.

Fig. 3. Upper picture: calibration test site geographically positioned on the 
basis of composite RGB Sentinel-2 imagery in UTM 34N projection. Red dots 

represent SBE soundings profiles. Lower picture: plots of selected sounding 
profiles (the same as in the upper figure) as functions of distance from the shore. 

RESULTS

In order to calibrate the proposed models of bathymetry 
retrieval, the sounding data described in the previous 
section was used. This process was based on visual and 
analytical inspection of the calibrating dataset. As it can be 
observed, the sounding in-situ observations contain not only 
underwater soundings but also some small number of in-situ 
measurements along the coast (above the water surface). 
Because of this, the in-situ observations with depth less than 
0.5 m were removed from further analysis. The remaining 
data was compared to the remote Sentinel-2 observations 
acquired on 4th March 2016, 9th March 2016, 27th March 2016, 
and 6th May 2016 under clean-sky conditions. 

LOG-RATIO MODEL CALIBRATION

During log-ratio model calibration, for each sounding 
point the <observation, model value> pair is built. Then, for 
each pair the model value is calculated using eq. (2) with initial 
values of m0 = 1 and m1 = 0. In the next step, this set of pairs 
is put under second degree polynomial regression in order 
to obtain optimal m0 and m1 values. The root mean square 
error of calibration and correlation is calculated as the quality 
indicator. The total number of calibration points equals 2074 
(Fig. 4). Figures 4-7 show scatter plots of calibrated SDB 
corresponding to sounding data for different S2 observations.

Fig.  4. Scatter plot of results obtained by optimized log-ratio model vs. 
depths obtained by SBE. Root mean square error was RMSE= 2.4231 [m] 
and Pearson correlation coefficient was R= 0.8254 Model was calibrated 

on the basis of satellite acquisition made on 4th March 2016.

Fig.  5. Scatter plot of results obtained by optimized log-ratio model vs. 
depths obtained by SBE. Root mean square error was RMSE= 2.0555 [m] 
and Pearson correlation coefficient was R= 0.8779. Model was calibrated 

on the basis of satellite acquisition made on 9th March 2016.
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Fig.  6. Scatter plot of results obtained by optimized log-ratio model vs. depths 
obtained by SBE. Root mean square error was RMSE= 2.079 [m] and Pearson 

correlation coefficient was R= 0.8749. Model was calibrated on the basis 
of satellite acquisition made on 27th March 2016

Fig.  7. Scatter plot of results obtained by optimized log-ratio model vs. depths 
obtained by SBE. Root mean square error was RMSE= 1.653 [m] and Pearson 

correlation coefficient was R= 0.9229. Model was calibrated on the basis 
of satellite acquisition made on 6th May 2016.

The presented results indicate strong correlation between 
SDB and the sounding data acquired by SBE. This strong 
correlation can be particularly observed for mid-range 
bottom depths. The noise for small bottom depths is caused 
by optical effects of wave collapse and relatively high temporal 
bathymetry variation. For deeper sounding, the maximal 
derived bathymetry differs in different observations, however 
in most cases it ranges between 12 and 16 meters. Within this 
range of bottom depth values, the SBE data for deeper optical 
properties of water becomes equal to that of fully deep water.

Nevertheless, it can be seen that for each observation used 
to derive bathymetry, SDB depicts the characteristics of the 
bottom profile lines. In order to present this, selected SBE 
profiles were plotted in Fig. 8 together with the corresponding 
SDB profile. The black line represents the calibration data, 
while the coloured lines represent SDB derived along the 
selected SBE profile for different acquisition datasets. This 
result is consistent with previous observations, as the SDB 
bathymetry profile depicts the shapes of SBE bathymetry, 

particularly for mid-range bottom depths. The difference 
between SBE and SDB increases at points situated deeper 
than 12-14 meters. 

Fig.  8. Comparison of analytical model performance for different calibration 
datasets recorded for one selected SBE profile.

ANALYTICAL MODEL CALIBRATION

The calibration methodology for the second model was 
analogical, however this model consists of at least four 
parameters (α0, α1, α2, α4) which are to be calibrated locally 
when using Senitnel-2 (for this purpose 3 optical bands: R, 
G, and B were used). Thus, for the sounding point calibration 
dataset M eq. 4 takes the form:

 (5)

where SDBM(k) is the satellite derived bathymetry for the k-th 
sounding point (M(k)), k(1,2,...., K), and K is the total number 
of calibration points. L(λi)M(k) is the i-th band reflectance 
corresponding to M(k). Then, for K calibration points, the 
optimal solution to the above stated optimization problem 
has the form of matrix equation (6):

 (6)

where   is the N-element column vector of optimal model 
parameters (αi), W is the optional K x K weight matrix, L is 
the K x N matrix, and z is the K-element column vector of 
sounding depths. Figures 9-12 show a series of scatter plots 
of calibrated SDB depths against SBE data, analogical to those 
shown in Figs. 4-7.

 Generally, the results are consistent with those obtained 
in the previous case, however some significant conclusions 
can be derived. For instance, both models reach a similar 
maximum depth derivation, which ranges in about 12-16 
meters. It can be also observed that higher data noise occurs 
for small- and maximum-depth ranges, while in mid-depth 
ranges the noise is relatively low. Moreover, in both models 
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the SDB obtained from observation made on 6th May 2016 
returns the smallest error among all observations. That leads 
to the conclusion that low water turbidity and other obscuring 
effects have higher impact on final quality of SDB then the 
applied model.

Fig.  9. Scatter plot of results obtained by optimized analytical model vs. 
depths obtained by SBE. Root mean square error was RMSE= 2.4186 [m] 
and Pearson correlation coefficient was R= 0.8262. Model was calibrated 

based on satellite acquisition made on 4th March 2016.

Fig. 10. Scatter plot of results obtained by optimized analytical model 
vs. depths obtained by SBE. Root mean square error was RMSE= 1.9694 [m] 

and Pearson correlation coefficient was R= 0.885. Model was calibrated based 
on satellite acquisition made on 9th March 2016.

Fig.  11. Scatter plot of results obtained by optimized analytical model vs. 
depths obtained by SBE. Root mean square error was RMSE= 1.9727 [m] 

and Pearson correlation coefficient was R= 0.8881. 9th March 201. Model was 
calibrated based on satellite acquisition made on 27th March 2016.

Fig.  12. Scatter plot of results obtained by optimized analytical model vs. 
depths obtained by SBE. Root mean square error was RMSE= 1.651 [m] 
and Pearson correlation coefficient was R= 0.9231. Model was calibrated 

based on satellite acquisition made on 6th May 2016.

Detailed comparison of SDB and SBE is given in Fig. 13 for 
the selected SBE profile (the same as in previous case). In this 
case, similar conclusions related to SDB errors and maximum 
derivation depth can be derived.  However, additional issues 
should be discussed. Firstly, both models can be characterized 
by the repeatability of the obtained SDB profiles. The shapes of 
the SBE bottom profiles can be observed, for all acquisitions, 
both in log-ratio and analytical model results. However, in 
both models, very shallow SDB observation can be derived 
as exposed over the water surface - this can be particularly 
seen for the observation made on 3rd March 2016. However, 
there is no certain method to tell whether this information is 
true or false. In other words, for this particular observation, 
some areas placed very near to the shore could be exposed 
above the water surface due to low sea lever or past storm. 

 
Fig.  13. Comparison of analytical model performance for different calibration 

datasets recorded for one selected SBE profile.

Overall comparison of model performance for different 
S2 observations is given in Table 1. This analysis shows that 
both models preserve satisfactory quality of SDB derived 
for depths 0-16m. This comparison also confirms earlier 
conclusions that the observation presented in the 4th row 
of the table (6th May 2016) is characterized by the highest 
quality what is confirmed by the lowest RMSE (1.653 m for 
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the log-ratio model and 1.653 m for the analytical model) 
and highest correlation from all calibration datasets (0.9229 
and 0.9231, respectively). 

Tab. 1. Comparison of model performance after calibration with different 
acquisition datasets

Log-ratio model Analytical model

Acquisition date R RMSE R RMSE

04.03.2016 0.8254 2.4231 0.8262 2.4186

09.03.2016 0.8779 2.0555 0.885 1.9694

27.03.2016 0.8749 2.079 0.8881 1.9727

06.05.2016 0.9229 1.653 0.9231 1.651

ERROR ANALYSIS

As it was observed, the correlation between SDB and SBE 
bathymetry is clearly visible, particularly for smaller depths 
than, approximately, 16 meters. For deeper soundings, the 
SDB estimator becomes constant and uncorrelated, like for 
fully deep water. In this context, it is noteworthy that SDB 
models do not behave evenly for all bottom depths, and 
model calibration is not efficient for the depths higher than 
12-16 meters. Therefore, model calibration making use of 
calibration points deeper than a particular threshold leads 
to the decrease of general model performance. 

In order to analyse how bottom depth influences the 
error of SDB, additional analysis of the obtained results was 
performed. For each remote observation, the bathymetry 
error was plotted as the function of depth. The results of this 
analysis are given in Fig. 14-17. In each figure, the upper plot 
represents the SDB error as the function of depth, the middle 
graph represents the number of calibration points for each 
water depth bin (it is a depth histogram of the calibration 
dataset). The lower plot shows changes of the introduced SDB 
quality coefficient (SDBQcoef ) that describes the quality of the 
retrieved SBD. This coefficient is described by the following 
formula:

 (7)

where σ is the standard deviation of the selected field with 
fully deep-water log ratios reflectance for wavelengths λi 
and λj. SDBQcoef enables to determine a threshold to which 
bathymetry derived by the proposed models can be retrieved 
with certain quality. Note that this value depends only on 
the remote observation data, therefore neither bathymetric 
nor other auxiliary information is necessary to compute it. 
Consequently, it can be used operationally. The red line in the 
lower plots (Fig. 14-17) represents the threshold equal to 0. 
As it can be observed, as SDBQcoef reaches this threshold, the 
SDB error is clearly increasing.

Fig.  14. Error distribution as function of depth (upper picture), SBE sounding 
count (middle), and SDB quality indicator plot (lower) for 4th March 2016. 

The red line in the lower plot represents threshold equal to 0.

Fig. 15. Error distribution as function of depth (upper picture), SBE sounding 
count (middle), and SDB quality indicator (SDBQcoef) plot (lower) for 9th 

March 2016

Fig.  16. Error distribution as function of depth (upper picture), SBE sounding 
count (middle), and SDB quality indicator (SDBQcoef) plot (lower) for 27th 

March 2016
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Fig. 17. Error distribution as function of depth (upper picture), SBE sounding 
count (middle), and SDB quality coefficient (SDBQcoef) indicator plot (lower) 

for 6th May 2016

In order to show benefits of using the SDBQcoef threshold, 
each model was calibrated with only those observations 
which met the aforementioned quality criterion, namely 
where SDBQcoef < 0. In this way, only those observations were 
used for model calibration which were indicated as valid 
by the quality indicator. The results of model calibration 
presented in Tab. 2 reveal significant improvement of model 
performance. Namely, for each observation dataset, the RMSE 
values are significantly lower. For the log-ratio model the 
RMSE was reduced from the range of 1.653-2.4231[m] to 
1.0822-1.4319 [m], while for the analytical model the final 
RMSE values ranged within 1.0681-1456[m], compared to the 
initial range of 1.651-2.4186 [m]. Analogically, the increase of 
the correlation coefficient was observed from 0.8254-0.9229 
to 0.8736-0.9346 for the log-ratio model and from 0.8262-
0.9231 to 0.869-0.9345 for the analytical model.
Tab. 2. Comparison of model performance after calibration with different 

SDB acquisition datasets and maximal depth determined by 
the quality indicator (SDBQcoef).

Log-ratio model Analytical model
Acquisition date R RMSE R RMSE

04.03.2016 0.8736 1.4319 0.869 1.456
09.03.2016 0.9065 1.0822 0.9091 1.0681
27.03.2016 0.9083 1.3678 0.9115 1.3447
06.05.2016 0.9346 1.3632 0.9345 1.3643

VERIFICATION OF RESULTS

In order to perform visual inspection of bottom maps 
generated by the proposed SDB models and visually verify the 
quality of these models, maps representing the bathymetry 
derived from remote observations were generated. Figures 
18-21 represent SDB images obtained with the use of the log-
ratio model and the analytical model. The data is presented 
as colour coded depths ranging from 0 to 18 meters. The 
analytical model was calibrated with the use of SDBQcoef  
thresholding technique, described in the previous section. 
The areas above water surface, in SDB and coast, are marked 
as white pixels.

Fig.  18. Comparison of colour coded depth maps obtained by the optimized 
log-ratio SDB model (upper figure) and the analytical SDB model 

(lower figure) for 3rd March 2016. 

Fig.  19. Comparison of colour coded depth maps obtained by the optimized 
log-ratio SDB model (upper figure) and the analytical SDB model 

(lower figure) for 9th March 2016.      
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Fig.  20. Comparison of colour coded depth maps obtained by the optimized 
log-ratio SDB model (upper figure) and the analytical SDB model (lower 

figure) for 27th March 2016. White pixels represent depths derived as situated 
above the sea surface.

Fig.  21. Comparison of colour coded depth maps obtained by the optimized 
log-ratio SDB model (upper figure) and the analytical SDB model (lower 
figure) for 6h May 2016. White pixels represent depths derived as situated 

above the sea surface.

It can be observed that the corresponding depth maps 
retrieved from both models are relatively similar to each other, 
and both techniques enable to obtain similar results in the 
context of visual analysis. Visible noise levels observed in the 
scatter plots presented in previous sections (Fig. 4-11) are also 
noticeable in these maps. Visual inspection of the results also 
reveals the fact that the examined methods behave relatively 
poorly for depths exceeding the maximum derivation depth 
determined by the SDBQcoef factor. However, for shallow and 
non-turbid waters, even single 3D shapes of underwater 
bathymetry are easy to retrieve for human eye. 

Visual inspection enables to notice only minor differences 
between the observations acquired at the same time, and 
both methods can be successfully used in relatively turbid 
and difficult conditions. 

CONCLUSIONS

The paper compares two fundamental methods for 
bathymetry retrieval from S2 multispectral satellite 
observations. The results of model performance were obtained 
using the data acquired for the 12-km long South Baltic 
coastline. The calibration points acquired from SBE surveys 
were delivered by the National Maritime Administration.

A detailed analysis of the obtained results shows that both 
methods can be successfully applied for the South Baltic 
region. However, some limitations and factors causing 
obstruction of the results can be observed. It is water turbidity 
which is most important in this case, therefore the bathymetry 
can be derived to the depth approximately equal to 12-18 
meters. What is also important is the fact that the maximum 
depth that can be derived from satellite observation varies 
in time and space and is difficult to be assumed a priori. To 
overcome this drawback, a novel indicator of determining 
maximal SDB depth was proposed in the paper. This SDB 
quality indicator is derived only on the basis of the remotely 
registered data and can therefore be applied operationally. 

During the research, a detailed analysis of errors obtained 
for different depth ranges was also performed. The obtained 
results indicate that the error of model calibration, expressed 
in meters (RMSE), equals up to 10-20% of the real depth and 
is, generally, case dependent. This value is worse than the 
results obtained by other authors [1][3-16]. However, there 
are at least two reasons for this. The first is water turbidity, 
as the effects of light attenuation and its spatial variety are 
much more obscuring in the Baltic Sea than in other locations 
such as presented in [1][3-16], where the testing datasets 
were related to optically clear waters. Another issue is that 
bathymetry surveys for this research were not collected at the 
same time. This is because of the fact that the Polish Maritime 
office performs SBE surveys periodically and, consequently, 
exact time co-incidence between remote observation and 
calibration data acquisitions was unavailable for our test 
site. Nevertheless, it was shown that the proposed methods, 
combined with the SDB quality indicator, are not only self-
adaptive but can also be used operationally, for instance to 
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deliver a cost-effective alternative for large scale bathymetry 
observations. The novelty of the research presented in the 
paper also relies on the fact that it bases on newly deployed 
ESA Sentinel-2 observations obtained for relatively difficult 
turbid Baltic Sea waters. 

ACKNOWLEDGEMENTS

The author wishes to thank the Maritime Office in Gdynia, 
Poland, for providing sounding bathymetry maps used in the 
research presented in the paper.

REFERENCES

1. D. R. Lyzenga, N. R. Malinas, and F. J. Tanis, “Multispectral 
bathymetry using a simple physically based algorithm,” 
IEEE Trans. Geosci. Remote Sens., vol. 44, no. 8, pp. 2251–
2259, Aug. 2006.

2. A. Chybicki et al., “GIS for remote sensing, analysis 
and visualisation of marine pollution and other marine 
ecosystem components,” 2008 1st International Conference 
on Information Technology, Gdansk, 2008, pp. 1-4. doi: 
10.1109/INFTECH.2008.4621628

3. Stumpf, R.P., Holderied, K., Sinclair, M., 2003. 
Determination of water depth with high-resolution satellite 
imagery over variable bottom types. Limonology Oceanogr. 
48, 547–556. doi:10.4319/lo.2003.48.1_part_2.0547

4. R. Lyzenga, D., 1981. Remote sensing of bottom reflectance 
and water attenuation parameters in shallow water using 
aircraft and Landsat data.  Int. J. Remote Sens. 2, 71–82. 

5. R. Lyzenga, D., 1978. Passive remote sensing technique for 
mapping water depth. Appl. Opt. 17, 379–383.

6. Philpot, W.D., 1989. Bathymetric mapping with passive 
multispectral imagery. Appl. Opt. 28, 1569–1578. 
doi:10.1364/AO.28.001569

7. J. C. Sandidge, and R. J. Holyer, “Coastal bathymetry from 
hyperspectral observations of water radiance,” Remote 
Sens. Environ., vol. 65, no. 3, pp. 341–352, Sep. 1998. 

8. S. M. Adler-Golden, P. K. Acharya, A. Berk, M. W. Matthew, 
and D. Gorodetzky, “Remote bathymetry of the littoral zone 
from AVIRIS, LASH, and QuickBird imagery,” IEEE Trans. 
Geoscis. Remote Sens., vol. 43, no. 2, pp. 337–347, Feb. 2005.

9. Sheng Ma, Zui Tao, Xiaofeng Yang, Member, IEEE, Yang 
Yu, Xuan Zhou, and Ziwei Li, “ Bathymetry Retrieval from 
Hyperspectral Remote Sensing Data in Optical-Shallow 
Water”, Ieee Transactions on Geoscience and Remote 
Sensing, Vol. 52, No. 2, February 2014

10. H. Holden and E. LeDrew, “Measuring and modeling water 
column effects on hyperspectral reflectance in a coral reef 
environment,” Remote Sens. Environ., vol. 81, nos. 2–3, pp. 
300–308, Aug. 2002.

11. Haibin Su, Hongxing Liu, William D. Heyman, “Automated 
Derivation of Bathymetric Information from Multi-
Spectral Satellite Imagery Using a Non-Linear Inversion 
Model”, Marine Geodesy, vol. 31, 2008.

12. E. P. Green, P. J. Mumby, A. J. Edwards, and C. D. 
Clark, “Remote sensing handbook for tropical coastal 
management,” in Coastal Management Sourcebooks 3, 
A. J. Edward, Ed. Paris, France: UNESCO, 2000.

13. Poliyapram V., Venkatesh R., Shinji M., 2016, Satellite-
derived bathymetry using adaptive geographically weighted 
Regression model, Marine Geodesy, vol. 39:6, 458-478.

14. Jensen, J. R. 2007. Remote sensing of the environment: An 
earth resource perspective, 2nd ed. Upper Saddle River, 
NJ: Prentice Hall

15. Mishra, D., S. Narumalani, D. Rundqulst, and 
M. Lawson. 2006. Benthic habitat mapping in tropical 
marine environments using QuickBird multispectral 
data. Photogrammetric Engineering & Remote Sensing 
72:1037–1048.

16. Lyzenga, D. R., N. P. Malinas, and F. J. Tanis. 2006. 
Multispectral bathymetry using a simple physically 
based algorithm. Geoscience and Remote Sensing, IEEE 
Transactions on 44:2251–2259.

17. Green, E. P., P. J. Mumby, A. J. Edwards, and C. D. Clark. 
2000. Remote sensing handbook for tropical coastal 
management. Paris: A. J. Edwards, UNESCO

18. Drusch, M. & 14 co-authors (2012). Sentinel-2: ESA’s optical 
high-resolution mission for GMES operational services, 
Rem. Sens. Env. (accepted).

19. Sentinels Scientific Data Hub, Technical Guide, European 
Space Agency, source: https://scihub.copernicus.eu/
userguide/ (accessed on 22/12/2016)

20. Hellenic National Sentinel Data Mirror Site. Operated 
by the National Observatory of Athens. Source: https://
sentinels.space.noa.gr/ (accessed on 22/12/2016)

21. National French Copernicus Site, Centre National D’Etudes 
Spatiales, Source: https://copernicus.cnes.fr/en/ground-
segment-1 (accessed on 22/12/2016) 



POLISH MARITIME RESEARCH, No 3/2017 25

22. Sentinel Application Platform (SNAP), available at Science 
Toolbox Exploitation Platform (STEP), European Space 
Agency, source: http://step.esa.int/main/toolboxes/snap/ 
(accessed on 22/12/2016)

23. Sen2cor - Sentinel-2 Level 2A product generation and 
formatting, available at Science Toolbox Exploitation 
Platform (STEP), European Space Agency, source: http://
step.esa.int/main/third-party-plugins-2/sen2cor/ (accessed 
on 22/12/2016)

CONTACT WITH THE AUTHOR

Andrzej Chybicki

e-mail: andrzej.chybicki@eti.pg.gda.pl
Gdansk University of Technology
Narutowicza 1/2, 80-233 Gdansk

Poland


