Physical Fields During Construction and Operation of Wind Farms by Example of Polish Maritime Areas

Open access


The article discusses an important issue of technical pressure exerted on the marine environment during construction and operation of maritime wind farms (MFW) on waters of the Polish Exclusive Economic Zone. A motivation for analysing this issue is the need for attracting attention to the aspect of physical field modification as the factor which links large scale technical activity at sea with the existence and functioning of the marine ecosystem, including further consequences to its economic benefits. Based on current knowledge and authors' analyses, the scale of modifications (disturbances) of physical fields expected to take place during MFW construction and operation was assessed.

1. Andrew, R. K., Howe B. M., Mercer J. A., Dzieciuch M. A.: Ocean ambient sound: Comparing the 1960's with the 1990's for a receiver of the California coast, Acoustic Research Letters Online 3 (2), pp.65-70, (2002)

2. Andrulewicz E., Napierska D., Otremba Z.: The environmental efects of the installation and functioning of the submarine SwePol Link HVDC transmission line: A case study of the Polish Maritime area of the Baltic Sea, Journal of Sea Research 49, pp.337-345, (2003)

3. Andrulewicz E., Pelczarski W. Kuzebski E., Szymanek L., Grygiel W.: Fishery and new concepts of the use of sea space – an example of the Polish Maritime areas, Proc. Conf. ICES ASC, Bergen, 17-21.09.2012, (2012)

4. BALANCE (Baltic Sea Management – Nature Conservation and Sustainable Development of the Ecosystem through Spatial Planning): Towards an Assessment of Ecological Coherence of the Marine Protected Areas Network in the Baltic Sea Region, BALANCE Interim Report No. 25, (2007)

5. Buckingham M. J., Wave propagation, stress relaxation, and grain-to-grain shearing in saturated, unconsolidated marine sediments, J. Acoust. Soc. Am. 108, pp.2796-2815 (2000)

6. CMACS (Centre for Marine and Coastal Studies): A Baseline Assessment of Electromagnetic Fields Generated by Ofshore Windfarm Cables, COWRIE Technical Report EMF 01-2002 66. Birkenhead, England, UK, (2003) Research_Report.pdf

7. Dietz R. S. & Sheehy M. J.: Transpacifc detection of myojin volcanic explosions by underwater sound. Bulletin of the Geological Society 2, pp.942-956 (1954).

8. Enger, P.S. Electroreception. In: D⊘ving, K. & Reimers, E. (eds.): Fish physiology, John Grieg Publishing, Bergen, Norway, (1992)

9. Francois R. E. & Garrison G. R.: Sound absorption based on ocean measurements. Part II: Boric acid contribution and equation for total absorption, J. Acoust. Soc. Am. 72, pp.1879-1890 (1982).

10. GESAMP (Joint Group of Experts on the Scientifc Aspects of Marine Environmental Protection): GESAMP Reports and Studies, No.47, (1991)

11. Gill A.B.: Gloyne-Phillips I., Neal K. J., Kimber J. A.: The potential efects of electromagnetic felds generated by sub-sea power cables associated with ofshore wind farm developments on electricity and magnetically sensitive marine organisms – a review, COWRIE 1.5 Electromagnetic Field Review, (2005)

12. Ginalski A.: The network Natura 2000 on Polish Maritime areas, (in Polish), Konferencja Instytutu na rzecz Ekorozwoju, Warsaw, February 15, 2011 (2011)

13. IMGW: Atlas of the Baltic Sea, (in Polish) collective work edited by A. Majewski and Z. Lauer, Instytut Meteorologii i Gospodarki Wodnej, Warsaw (1994)

14. IMGW: Southern Baltic Sea – annual characteristic of selected elements of the environment, (in Polish), Instytut Meteorologii i Gospodarki Wodnej - Oddział Morski w Gdyni, (1987-2012)

15. Karlsson, L.: Migration of European silver eels, Anguilla anguilla. Orientation to the earth's magnetic feld and pulpmill efuents particularly in the Baltic, Acta Universitatis Upsaliensis 745, pp.5-24, (1984)

16. Medwin H. & Clay C. S.: Fundamentals of Acoustical Oceanography, Academic, Boston, 1998MTBiGW (Ministry of Transport Construction and Maritime Economy): Map of potential places selected for location of wind farms in the exclusive economic zone, (in Polish)

17. Moller, P.: Electric Fishes: History and Behavior, Chapman & Hall, (1995)

18. Nakamura, T., Hirose, C., Hirose, R., Hirooka, S., Sasaki, H.: Observation of electric felds in the shallow sea using the stainless steel electrode antenna system, Physics and Chemistry of the Earth, Parts A/B/C Vol. 31, Issues 4-9, 2006, pp.352-355.

19. Norton G.V. Novarini J.C.: On the relative role of sea-surface roughness and bubble plumes in shallow-water propagation in the low-kilohertz region, J. Acoust. Soc. Am. 110, pp.2946-2955, (2001)

20. Nedwell J., Langworthy J, Howell D.: Assessment of sub-sea acoustic noise and vibration from ofshore wind turbines and its impact on marine wildlife; initial measurements of underwater noise during construction of ofshore wind farms, and comparison with background noise, Report No. 544 R 0424, (2003)

21. Otremba, Z., Andrulewicz, E.: Environmental Concerns Related to Existing and Planned Technical Installations in the Baltic Sea, Polish J. of Environ. Stud. Vol.17, pp.173179, (2008)

22. Poleo, A.B.S., Johannessen, H. F., Harboe, M.:. High Voltage Direct Current (HVDC) seacables and sea electrodes: efects on marine life, University of Oslo, (2001)

23. Popper, A.N., Hastings, M.C.: The efects of anthropogenic sources of sound on fshes, Journal of Fish Biology, Vol. 75, Issue 3, pp.455-489. (2009a)

24. Popper, A.N., Hastings, M.C.: The efects of human-generated sound of fsh, Integrative Zoology, 4, pp.43-52, (2009b)

25. Potter J.R., Delory E “Noise sources in the sea and the impact for those who live there” Acoustics and Vibration Asia ‘98, Singapore, (1998)

26. Rochalska, M.,. The infuence of electromagnetic felds on fora and fauna, Medycyna Pracy 60, pp.43- 50, (2009)

27. Żygowska E.: Conditions for development of marine wind power industry in Poland, (in Polish), PSEW (Polskie Stowarzyszenie Energetyki Wiatrowej), I Międzynarodowy Kongres Morski w Szczecinie, 13 June 2013, (2013)

28. Ruskule A., Kuris M, Leiput. G. Vetemaa M., Zableckis S.: Ship trafc in the Baltic Sea and port development, Chapter in: See the Baltic Sea, Ed.: Sea in Baltic Environmental Forum – Latvia (BEF-Latvia), (2009)

29. Shields M.A., Woolf D.K., Grist E.P.M., Kerr S.A., Jackson A.C., Harris R.E., Bel M., Beharie R., Want A., Osalusi E., Gibb S.W., Side J.: Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment, Ocean & Coastal Management 54, pp.2-9, (2011)

30. Slater M.,: The prediction of electromagnetic felds generated by submarine power cables, Oregon Wave Energy Trust, 0905-00-007, (2010)

31. Slater M., Jones R., Schultz A. Electromagnetic Field Study, Ed: Oregon Wave Energy Trust, (2010) www.oregonwave. org

32. SNBF (Swedish National Board of Fisheries):. Telemetriförsök med blankål vid HVDC polkabel (Telemetric try of detection of silver eels at HVDC cable), (1997)

33. South Baltic Program: South Baltic Ofshore Wind Energy Regions: Ofshore wind energy in Poland, http://www.

34. Souza, J.J., Poluhowich, J.J., Guerra, R.J.: Orientation responses of American eels, Anguilla rostrata, to varying magnetic feld, Comp. Biochem. Physiol. 90A, pp.57-61, (1988)

35. Stryjecki M.: Foundation for Sustainable Energy, Legal, political and infrastructural conditions for development of marine wind power industry in Poland, (in Polish), Konf. Morska Energetyka, Słupsk - 21 January, 2013, (2013)

36. Tesch, F.W., Wendt, T., Infuence of geomagnetism on the activity and orientation of eel, Anguilla, as evident from laboratory experiment. Aq. Ecol. Freshw. Fish. 1, pp.52-60, (1992)

37. Urick, R J.: Principles of Underwater Sound, 3rd Edition. New York. McGraw-Hill, 1983.

38. Wenz G. M.: Acoustic ambient noise in the ocean: spectra and sources, J. Acoust. Soc. Am. 34, pp.1936-1956 (1962).

39. Westerberg H., Lagenfelt I., Andersson I., Wahlberg M., Sparrevik E.: Impact of the SwePol Link on fsh and fsheries, Swedish Agency for Marine and Water Management, (2007) (in Swedish and Polish)

40. Wiltschko, R., Wiltschko, W.: Magnetic orientation in animals, Springer-Verlag, Berlin, (1995).

Polish Maritime Research

The Journal of Gdansk University of Technology

Journal Information

IMPACT FACTOR 2018: 1,214
5-year IMPACT FACTOR: 1,086

CiteScore 2018: 1.48

SCImago Journal Rank (SJR) 2018: 0.391
Source Normalized Impact per Paper (SNIP) 2018: 1.141

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 211 136 5
PDF Downloads 84 62 7