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INTRODUCTION

Neural networks (NNs) can be useful wherever there are 
difficulties with the formulation and/or solution of an analytical 
model but where the network tuning data are available. 
The data may be objective or subjective, i.e. derived from 
human memory. Such fields include, among other domains, 
reliability and safety of anthrop technical systems, in particular 
complex systems where formal models may be burdened with 
considerable uncertainty. 

Tuning a neural network consists in determining the values 
of network input/output (I/O) parameters. When objective data 
are not available, the tuning may be based on expert judgement. 
There are fields of technology where experts can be found 
only among experienced operators. This is the case discussed 
in this paper. 

The neural network I/O values must be correlated - the 
non-correlated values are obviously useless for tuning. 
Obtaining correlated subjective data is an essential difficulty 
in the considered case. There are several ways of effecting the 
level of correlation. First of all it is proper selection of experts 
and methods of judgement elicitation, and applying effective 
methods of processing the obtained data. 

EXPERTS AND ELICITATION PROCEDURE

The expert is assumed to be a person well acquainted 
with the subject he is expected to formulate his judgement 
on. The knowledge is connected with the experience acquired 
by years-long practice. The expert should also be capable of 

formulating his judgement. This is connected with the level of 
his education and the language used in the elicitation process, 
particularly as regards the parameters the expert is expected to 
estimate. This may be the language of numerical or linguistic 
values. Numerical values are better but are more difficult to 
articulate - also errors in judgements are more likely. The analyst 
designing the reliability investigation method must in each case 
select properly the category of available experts, the number of 
experts and the elicitation language to be used. The number and 
qualifications of the available experts may be a limitation. 

In the case of reliability, tuning pertains to characteristics 
expressed by probabilistic values, e.g. reliability function, 
unreliability function, failure rate, intensity function, or to 
physical values - operands in those expressions - e.g. failure 
frequency, time to failure or time between failures. 

Preferred candidates for experts are persons having 
experience in observing the operation process of the elicitation 
objects for sufficiently long time and having proper theoretical 
knowledge. The reliability analyst must determine the 
elicitation language and choose the available expert category. 
For instance, in the reliability investigation of nuclear power 
stations, operators of those objects may be considered high-
class specialists with knowledge of the calculus of probability, 
and on seagoing ships - members of the crew with various 
education levels, generally not familiar with the probability.

Man is not good as a probability estimator. His judgements 
show biases, weak calibration, incoherence, and overconfidence 
tendency. Dependences may occur between expert judgements. 
These flaws cannot be fully removed in the elicitation phase 
[4, 9].
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Table 1 contains data on presentation forms of probabilistic 
judgements. The type of probability distribution is connected 
with the character of the respective event. For instance, the 
up time or maintenance time distributions are continuous and 
the human error probability is generally estimated by discrete 
distributions. Distributions of dangerous event circumstances, 
appearing in the event trees, are generally estimated by discrete 
two-point distributions. The distribution dimension may be 
essential in the case of estimation of probability distributions 
of different categories of losses and also in distributions of 
state parameters of the risk analysis object environment, e.g. 
meteorological conditions. 
Tab. 1. Taxonomy of the forms of probabilistic judgements used in reliability

Distribution type 

Discrete or continuous. 
If discrete then two-point or 

multipoint.
If continuous then in known 
functional form or empirical. 

Models of probability 
distributions

Empirical.
Formal - e.g. exponential, normal 

or Markov processes. 

Distribution dimension Single-dimensional or multi-
dimensional.

Frequency of events Frequent (p > 0.01) 
or rare (p < 0.01).

Calibration With or without calibration by 
objective data.

Differentiation of frequent and rare events is essential. The 
latter may be out of the experience of experts, who have not 
observed them. The estimation of the probability of occurrence 
of rare events is based on intuition. 

As regards the information in the last row of Table 1, 
significant is the fact of having or not having objective 
information which could be used for the calibration of expert 
judgements. Without such information the estimation results 
may bear considerable uncertainty.

Reference [4] describes conditions to be fulfilled in the 
expert judgement elicitation phase. The main conditions pertain 
to the selection of experts, instructions, questionnaires and the 
way they should be filled-in, and also to the independence of 
judgements and the interview duration. Experts are chosen 
according to the subject of investigation. They are informed 
about the purpose and procedure of the investigation, data 
processing method and other possible questions. They are 
asked to formulate their judgements in a straightforward and 
honest way. Experts present their judgements by filling in the 
prepared questionnaires; give numbers or linguistic values by 
marking the appropriate fields. They cannot answer questions 
on subjects they have no knowledge about. The questionnaires 
should be as simple as possible. 

The expert judgements must be formulated independently, 
which means that the experts must not contact with each other 
during the elicitation process. They are supposed to formulate 
their judgements entirely on their own, relying on their personal 
experience [1, 4, 9].

TUNING THE NEURAL NETWORKS OF 
RELIABILITY

The anthrop technical object of interest will be treated as 
a reliability system. It may be a no-repairable or repairable 
system with negligible or non-negligible renewal time. The 

catastrophic failure state will be modeled as the absorbing 
state.

Let’s assume that the task to be done by the neural network 
is to determine system reliability model parameters. If we 
choose a specific reliability model then the basic problem 
is to determine its parameters. In general, the uncertainty 
of a model is connected mainly with the uncertainty of its 
parameters. By identifying parameters of the model we obtain 
sufficient material to be able to control its reliability, and the 
neural network model becomes simpler than that of the system 
as a whole. 

The first step in programming an investigation is to define its 
objective and assumptions concerning the investigation subject 
(definitions of the system and its operational states, formal 
reliability model, characteristics of the environment). With 
these assumptions the system fault tree (FT) can be constructed. 
The fault tree allows determining the sets of elements effecting 
the system reliability, and also indirect relations if it appears 
helpful in the elicitation process. 

We shall continue the consideration with, for instance, 
the exponential reliability system and the Markov chain. The 
task of the neural network will be to determine parameters of 
those systems. 

Exponential distribution 

R(t) = exp(– λt)                            (1)

where:
λ = 1/MTTF - the failure rate,
MTTF - the mean time to failures, which can be 

estimated by an expert without difficulties, 
t - is the time.

Markov chain 

The graph presents the simplest case of a chain with two 
states: 1 – the state of operational use with λ(t) failure rate, and 
2 – the maintenance state with μ(t) repair rate of the reliability 
system. It is a nonhomogeneous process with finite renewal 
time. When the transition rates are not time-dependent then 
the process becomes homogeneous and the distributions of the 
state 1 and 2 duration times are exponential. The availability 
formula for an asymptotic homogenous version of the system 
takes the form:

(2)

Parameters of model (2) are the rates of failure λ and 
repair μ. In general, they are time-dependent, but may be 
approximated by constant or constant in time intervals. 
Statistical verification of such simplification is recommended 
[6, 11]. From the renewal equations: 

(3)

where:
H(t) = E[ν(t)] - he expected value of ν(t),
ν(t) -  the number of failures in time interval t,
T0 = MTBF.
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From formula (3) - after sufficiently long time: 

(4)

where:
 - the mean number of failures in time interval t, which 

can be easily determined from the expert judgements.
In the case of identical exponential distributions of times 

between failures 

λ = 1/MTBF                            (5)

It is generally assumed that the maintenance times have also 
exponential distributions with time-independent transition rates 
μ. This assumption pertains to direct maintenance work time 
without organizational preparation time and waiting time for 
beginning the work. In practice, that preparation period may be 
chaotic, which makes probabilistic estimation of the parameter 
μ difficult or even impossible. The following approach to the 
estimation of parameter μ is proposed: 
1) adopting the model with negligible renewal time when that 

time is short compared with the usage time;
2) adopting constant renewal times for individual devices;
3) determining μ from the formula:

(6)

where:
 - the mean renewal time, to be estimated by the experts. 

In general, the reliability model parameters are functions of 
operands - physical values - like the time to failure, time between 
failures, duration times of specific reliability or operational 
states, and/or the number of failures in a time interval (event 
frequencies). These values are easier to be determined by 
an expert than the probabilistic model parameters. They are 
suggested to be used in elicitation. 

The above presented considerations deal with the neural 
network output parameters, i.e. the top event (TE) in the tree 
FT, which is the system failure. Now we shall deal with the 
determination of the input parameters, i.e. basic events (BEs) 
in relation to TE. These are the system element failures. It is 
possible to obtain linguistic values of shares of the basic events 
in the top event frequencies. The linguistic variables have 
associated sets of values (very rare, rare, occasional, frequent, 
and very frequent). The linguistic values determined in the 
elicitation process allow to apply the pairwise comparison 
method in order to determine the preferences linking individual 
pairs and then, using the AHP method, the corresponding 
numerical values [10, 12]. The correlation level between the 
neural network output and input parameters should then be 
verified. 

In the case of a large reliability system, the elicitation process 
of the shares of system elements in the failure frequencies may 
be subdivided into “layers”, for instance in the case of two FT 
system layers - higher and lower - first determine the shares of 
higher layer elements in the system failure frequencies and then 
the shares of lower layer elements in the failure frequencies of 

Fig. 1. Network of the algorithm of data elicitation and processing for tuning the neural network
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It was proved [14] that with this particular value of c the 
difference between the linguistic judgment matrix and the 
matrix derived from the priority vector is at a minimum. Table 2 
shows the Xu scale data with parameter c = 2. 

Tab. 2. AHP geometrical scale data (c = 2)

Differences 
of expert 

judgments

AHP geometrical scale with parameter c = 2

si I(s) r(s) Description of preference
0 so 0 1 equally import ant

1 s2 2 2 moderately more important

2 s4 4 4 strongly more important

3 s6 6 8 evidently more important

4 s8 8 16 extremely more important

-1 s-2 -2 0.5 moderately less important

-2 s-4 -4 0.25 strongly less important

-3 s-6 -6 0.125 evidently less important

-4 s-8 -8 0.0625 extremely less important

DATA CORRELATION PROBLEM 

The data elicited from the experts may have a numerical or 
linguistic form. The latter are adjectives valuating the intensity 
of the measured variable of an object’s feature, process or 
phenomenon. These adjectives may be assigned natural 
numbers, ascending with the increasing intensity, i.e. perform 
ranking of the measured value. The estimates of the linguistic 
values are done by means of ordered scales. The scales have 
order relations.

Fig. 2. Fault tree of a ship propulsion system ICF
Legend: PS – propulsion system; ICF – immediate catastrophic failure; 

CF – catastrophic failure. 
SSi – subsystem, i = 1 – fuel oil subsystem, 2 – sea water cooling subs.; 

3 – low temperature fresh water cooling subs.; 4 – high temperature fresh 
water cooling subs.; 5 – starting air subs.; 6 – lubrication oil subs.; 

7 – cylinder lubrication oil subs.; 8 – electrical subs.; 9 – main engine 
subs.; 10 – remote control subs.; 11 – propeller + shaft line subs. 

SD1k – set of devices; ik = 11 – fuel oil service tanks; 12 – f. o. supply 
pumps; 13 – f. o. circulating pumps; 14 – f. o. heaters; 15 – filters; 
16 – viscosity control arrangement; 17 – piping heating up steam 

arrangement

As indicated above, in the case of physical objects observed 
in the operation process the numerical values pertain to 
independent variables in expressions defining the reliability 
model parameters. They are estimated in interval scales. Such 
scales have a constant unit of measurement, the order relation 
and an optionally chosen zero point.

The correlation analysis of the values measured on the above 
presented scales is carried out using non-parametric methods. 

the higher layer objects. The principles of completeness and 
disjointness should be maintained. This procedure will increase 
the correctness of expert estimates. 

Let φ be an parameter of a NN and p = (p1, p2, ..., pn)T - 
vector of parameter sequences of BS event shares in the system 
fault tree, being the network inputs determined by the AHP 
method. Then the input vector will take the form [10, 12]:

φ = φp = ( φ 1, φ 2, ..., φ n)T                   (7)

The preferred method of determining the sequence vector 
is the logarithmic least squares method [10].

Fig. 1 presents the flow diagram of the elicitation and data 
processing algorithm for obtaining correlated sets suitable for 
NN tuning. 

PROCESSING OF EXPERT DATA BY THE 
AHP METHOD

Linguistic estimates of the shares of reliability system 
elements in the system failure frequency consist in expert choice 
of the share value from the set of five values. The estimates are 
given numbers from 1 to 5. Differences of experts’ judgements 
indicate the scale of preferences in the pairwise comparison of 
the linguistic estimates. Depending on these differences, the 
preferences are assigned weights r(s) in accordance with a scale 
function. Then the linguistic judgment matrix R is determined 
and transformed into the priority vector p:

(8)

where:
R - the linguistic judgement matrix
rij - the preference of i-th to j-th share (i,j = 1, 2,…, n), with 

properties: rij > 0, ∀i,jri,j = 1/rj,i .

Matrix R is consistent if its elements fulfill the condition: 
ri,jrj,k = rik ∀i,j,k = 1, 2, ..., n.

The priority vector p = (p1, ..., pn)T is determined by 
approximation of matrix R with matrix P, where:

(9)

The measure of consistency of the Xu processing is the 
difference between matrices P and R [14]:

(10)

The Xu scale [14] is a geometrical scale with parameter 
c = 2, in the form:

(11)

where:
I(s) - the index of the preference symbol s,
c - the parameter.
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They compensate the effects of the standing-out measurements 
and the non-normality of the elicited values [13].

To the correlation analysis of the data obtained from the 
elicitation process the R. Spearman’s method is applied. The 
output and input data are ranked by assigning them ascending 
natural numbers starting from 1. The numbers are ranks. The 
ranking process may be performed also with the decreasing 
sequence. The Spearman’s rank correlation coefficient is 
determined from the following formula [13]:

(12)

where:
di - the difference between the ranks of corresponding 

characteristic values. The correlation coefficient ranges 
within –1 ≤ rs ≤ 1. 

The correlation coefficient determined by formula (11) is 
applicable only to a random sample, and the correlation of the 
general population should also be checked. For that the zero 
hypothesis Ho: ρ = 0, where ρ is the correlation coefficient 
of the general population, is verified against the alternative 
hypothesis H1: ρ ≠ 0. The t-Student test is used for verification. 
It is assumed that the population has the Student distribution 
with n -1 degrees of freedom. The test has the form:

(13)

where:
n - the size of the sample.

Fig. 3. Distribution of propulsion system ICF type failure numbers

The test value t is compared with the critical value tp 
determined from the Student tables for an assumed significance 
level p and n - 2 degrees of freedom. If t > tp then hypothesis 
H0 is rejected and hypothesis H1 is accepted (the correlation 
exists also in the general population) [13].

EXAMPLE

Object of analysis, elicitation

The example illustrates the reliability analysis of a container 
carrier propulsion system (PS) with slow-speed piston internal 
combustion engine and screw propeller, operating in the 
North Atlantic (*). The reliability was analysed for immediate 
catastrophic failures (ICF) of the PS; it is substantial in the case 
of the risk analysis of PS. Fig. 2 presents the FT of the PS. It 
was assumed that ICFs can occur only during the active usage 
state of the system, i.e. during the ship sea voyage. Detailed 
data of this example can be found in [1, 2, 3].

A questionnaire was presented with definitions of the 
investigated object, “immediately catastrophic failure of PS” 
and “sea traffic”, as well as tables to be filled in by the experts 
and suggestions how to do it. The questionnaire was filled in 
by 50 experts - ship engineers with multi-year experience. 
Questions were asked about the annual frequency of propulsion 
system ICF type events, the share of subsystem (SS) failures in 
the PS system failure frequency and the share of module (set of 
devices - SD) ICF type failures in the SS failure frequencies. 
Appendix 1 shows fragments of the questionnaire. 

The data elicitated by the experts have been multiplied in 
the neural network tuning process to 2 - 3 hundreds base on 
uniform distribution.

Analysis of the correlation of elicitation results 

As regards the propulsion system as a whole, the experts 
gave their subjective estimates of the ICF type failures per 
year in numbers, and linguistically by marking one of fields 
in the order scale containing numbers and descriptions of that 
failure frequency (see Appendix 1). For instance, Fig. 3 presents 
a histogram of the system PS failure frequency per year. The 
histogram shows a distribution close to the normal distribution, 
which may be considered correct in the case of observation 
of dangerous events with more or less steady frequency of 
occurrence. 

The elicitation of the ICF type failures of SS subsystems 
and their SD modules consisted in marking appropriate fields 
in the questionnaire order scales (see Appendix 1). They 
indicated the share of a given SS or SD in the ICF type failure 
frequency of a direct higher level object, i.e. of the propulsion 
system in the case of SSs and of a specific SS in the case of SD 
modules. The shares were pairwise compared and respective 
differences of numbers were treated as numerical estimates of 
experts’ preferences. The preferences were assigned values in 
accordance with the geometrical scale function.

Appendix 2 presents selected verification results of 
correlation between the PS – SSi, (i = 1, 2, …, 11), SS1k 
– SDik, (11, 12, …, 17) and PS – SDik, (11, 12, …, 17) data. 
The correlation coefficients ranged within 0.9716 – 0.9909, so 
the data sets appeared well correlated (nearly total correlation 
according to [13]). The zero correlation in the general 
population H0 hypothesis was rejected at the 0.01 level. The 
consistency measure Xu (8) was zero.

CONCLUSION 

The above text presents the method to tune the neural 
network. The network is only directed to determine subjective 
parameters of the complex reliability system model. The 
numerical elicitation of the system’s failure frequency is 
performed, with further linguistic elicitation of the shares 
of failures in system’s elements in that value. The first value 
serves for determining the network’s output parameter and the 
second one serves for determining the set of network’s input 
parameters. The linguistic values are subjected to pairwise 
comparison and assigned numerical values by means of the 
AHP method. The correlation between the output and input 
parameters is investigated. When it is positive we can find that 
the tuning parameters are corrected for general population. 

The content presented above allows concluding that the 
used neural network tuning procedure gives correct results. 
It appears appropriate when makes use of experts who are 
experienced operators of the reliability analysis objects. It may 
be useful for network tuning in reliability analyses and for the 
technical system risk management. 
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Appendix 1. Fragments of PS and SS questionnaire

13. Propulsion system (as a whole) – main task of the system is ship propulsion and additional task is electric energy 
generation (not included in the investigation).

The following ranges of the propulsion system critical failure frequencies are distinguished:
A – very rare – the failure occurrence seems unlikely but is possible;
B – rare – probability of failure is low but failure may be expected;
C – occasional – failures happen several times in the ship life;
D – frequent – failures occur frequently;
E – very frequent – failures recur regularly.

Please give in the table below:
- your own estimate of average frequency per year of the propulsion system catastrophic failures, which caused immediate 

stoppage or impossibility of starting the system at sea;
- mark (X), at your discretion, the appropriate frequency range.

Frequency per year of the propulsion system critical failures: ..........................[year-1]
Propulsion system failure frequency range:

1 – very rare 2 – rare 3 – occasional 4 – frequent 5 – very frequent 

14. Subsystems of the propulsion system (main engine, installations, assemblies) – Please mark (X) appropriate table fields, 
in accordance with your professional experience 

Subsystem
Share of failures of the installation / engine / assembly in the total number of 

propulsion system critical failures causing its immediate stoppage 

5. very large 4. large 3. medium 2. small 1. very small / none

1. Propeller + shaft line SS
2. Remote control SS
3. Main engine SS
4. Electric SS
5. Cylinder lubrication SS
6. Lubrication SS
7. Starting air SS
8. High temperature fresh water cooling SS
9. Low temperature fresh water cooling SS
10. Sea water cooling SS
11. Fuel oil SS
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Appendix 2. Results of expert data correlation analysis after processing 
by the AHP method (geometrical scale, c = 2)

Spearman correlations between PS and SSi, (i = 1, 2, …, 11) estimates, after processing by the AHP method

SSi* SS1 SS2 SS3 SS4 SS5 SS6 SS7 SS8 SS9 SS10 SS11

Spearman 
ranking 0.9905 0.9835 0.9830 0.9845 0.9874 0.9855 0.9827 0.9921 0.9930 0.9879 0.9825

t test 50.303237 38.047424 37.437767 39.233811 43.732864 40.671667 37.169861 55.318965 58.65185 44.60928 36.907435

t crit. 
(p = 0.01) 2.682204

0 hypothesis rejected rejected rejected rejected rejected rejected rejected rejected rejected rejected rejected

Spearman correlations between SS1 and SD1k, (k = 1, 2, …, 7) estimates, after AHP
 

SD1k* SD11 SD12 SD13 SD14 SD15 SD16 SD17

Spearman ranking 0.9716 0.9857 0.9864 0.9761 0.9829 0.9877 0.9787

t test 28.752914 41.002746 42.02624 31.463987 37.316519 44.142822 33.393157

t crit. (p = 0.01) 2.682204

0 hypothesis rejected rejected rejected rejected rejected rejected rejected

Spearman’s correlation between estimates of PS and SD1k, (k = 1, 2, …, 7) belonging to SS1, 
after processing by the AHP method

SD1k* SD11 SD12 SD13 SD14 SD15 SD16 SD17

Spearman ranking 0.9827 0.9908 0.9905 0.9873 0.9909  0.9931 0.9879

t test 37.126849 51.387827 50.391728 43.579343 51.456312 59.202177 44.671438

t crit. (p = 0.01) 2.682204

0 hypothesis rejected rejected rejected rejected rejected rejected rejected

* Descriptions of the SSi and SD1k modules as in Fig. 2


