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INTRODUCTION

A review of literature concerning the theory and design 
of wind turbines shows serious deficiencies in proper 
understanding and correct interpretation of the results of 
calculations based on modeling the flow of ideal fluid in an 
unbounded domain by means of principles of conservation of 
momentum, moment of momentum and energy. An example 
of this may be the maximum value of the efficiency of an ideal 
wind turbine, determined by Betz [1] and quoted as an absolute 
upper limit even in the most recent publications.

Starting from the 1960s the models of an ideal propulsor 
and an ideal propeller were used at Institute of Fluid Flow 
Machinery, e.g. for determination of the tunnel wall influence 
on the hydrodynamic characteristics of propellers [3] and for 
determination of the hydrodynamic characteristics of propellers 
by means of the vortex theory. The experience acquired over 
many years enables a thorough analysis of the applicability of 
the above mentioned ideal models to problems of operation of 
real fluid flow machines.

The principles of conservation of momentum, moment 
of momentum and energy in connection with the appropriate 
vortex models enable the determination of maximum achievable 
performance of certain fluid flow machines, such as:
- an ideal propulsor,
- an ideal screw propeller,
- an ideal fluid brake,
- an ideal axial wind turbine.

In the cases of an ideal propulsor and ideal fluid brake the 
required results may be obtained without resorting to vortex 
models. However, if the information about flow details in the 
close vicinity of the disc is required, the application of the 
vortex model (or the equivalent accelerating or decelerating 
actuator disc) is necessary. In the cases of an ideal screw 
propeller or an ideal turbine the application of vortex models 
is necessary at every stage of calculations. The detailed 
presentation and discussion of the computational models for 
all four above mentioned machines is given below.

AN IDEAL PROPULSOR

An ideal propulsor is the simplest form of the fluid 
propulsor, in which a surface perpendicular to the flow (not 
necessarily of a circular shape) covered with pressure dipoles 
accelerates the flow both in front and behind the propulsor (cf. 
Fig. 1). At the propulsor surface itself a jump in fluid pressure 
is created. Consequently, a propulsor stream is generated, in 
which at a certain distance (typically about 3 diameters of the 
propulsor disc) the velocity achieves constant values at the 
cross-sections of the stream both behind (section 3 in Fig. 1), 
in front of the propulsor (section 1) and on the cylindrical side 
surface of the stream. The sections 1 and 3 are referred to as 
“far in front” and “far behind” the propulsor. In reality the 
closest to the ideal propulsor is the magneto-hydrodynamic 
propulsor, used as the “silent” propulsor on some submarines. 
In these propulsors a strong electromagnetic field generates 
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motion of particles of salt water. Strictly ideal case of such 
a propulsor would require elimination of the boundary layer 
on the propulsor channel walls. Within the model of an ideal 
propulsor two cases may be distinguished:
- an optimum ideal propulsor,
- a non-optimum ideal propulsor.

The above cases depend strictly upon the uniformity of 
the velocity field inside the propulsor stream. Namely, every 
deviation from the uniform velocity field leads to the reduction 
of efficiency. Further discussion is limited to the optimum 
case only.

In an optimum ideal propeller the axial force acting on the 
fluid is equal to the multiple of pressure jump and the area of 
the propulsor surface:

(1)

In the case of the optimum ideal propulsor the distribution 
of the pressure dipoles over the propulsor surface is uniform 
and the pressure jump Δp may be univocally determined from 
the Bernoulli equation for any streamline in front and behind 
the propulsor (Fig. 1):

(2a)

(2b)

After subtracting (2b) from (2a) the pressure jump at the 
propulsor surface Δp is obtained:

(3)

Substitution to formula (1) yields the thrust of the 
propulsor:

(4)

where:
mv3 = Vx3/V0

The ideal thrust loading coefficient of the propulsor is 
equal to:

(5)

The thrust of the propulsor may be also obtained from 
the momentum conservation principle applied to the control 
surface S consisting of the side surface of the stream Sb, inlet 
cross-section of the stream S1, outlet cross-section of the stream 
S3 and the surface containing the external forces acting on the 
fluid Sp (Fig. 1):

(6)

If the surface Sp, encompassing the external forces, is 
excluded from the surface S, then the axial force (thrust) T is 
equal to the rate of change of fluid momentum on the entire 
control surface and the force induced by the pressure field on 
the remaining part of S:

(7)

On the surface S1 there is  = – V0 and on the surface S3 
there is  = V0 + Vx3. Consequently, the following relation 
between S1 and S3 may be established, making use of the 
continuity equation:

(8)

In the case of an unbounded fluid domain the same pressure 
p0 acts on the entire surface S including surfaces S1, Sb and 
S3, hence the second term in equation (7) is zero. In case of 
a bounded fluid domain (e.g. inside a tunnel) this condition 
does not hold.

Taking into account that the side surface of the propulsor 
stream is in fact the stream surface, the scalar multiple  = 0. 
Finally, another formula for the axial force (or thrust) induced 
by an ideal propulsor is obtained:

(9)

Comparing formulae (9) and (4), the relation between 
the velocities induced at the propulsor and “far behind” the 
propulsor is obtained:

(10)

It may be concluded from this relation that the induced 
velocity at the propulsor is equal half of the value of the 

Fig. 1. The stream of an ideal propulsor
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induced velocity “far behind”. Often this relation is accepted 
“a priori”, which is not always correct, because it depends on 
the above assumptions, regarding an unbounded fluid domain 
and uniformity of velocity distribution over the propulsor 
surface.

The thrust loading coefficient of the propulsor, related to 
the area of the propulsor stream cross-section “far behind” the 
propulsor is equal to:

(11)

The following relation stems from the principle of energy 
conservation (disregarding heat exchange):

(12)

The scalar multiple on the side surface of the propulsor 
stream  = 0. The sum of integrals on the surfaces S1 and S3 
is also equal zero according to the continuity equation:

Hence the power (energy per second) lost in the stream is 
equal to:

(13)

The power loading coefficient of the propulsor, related to 
the area of the propulsor stream cross-section “far behind” the 
propulsor is equal to:

(14)

The same coefficient related to the propulsor surface area 
is equal to:

(15)

The efficiency of the propulsor is defined as the ratio of 
the power of thrust to the power lost at the cross-section “far 
behind” the propulsor (cf. Fig. 2):

(16)

The efficiency of an ideal propulsor is often presented as 
a function of the thrust loading coefficients CT3i or CT2i.

Using the formula (11) a quadratic equation may be solved, 
leading to the following relation:

(17)

which in turn may be used to develop the following formula for 
propulsor efficiency, depending on the thrust loading coefficient 
“far behind”:

(18)

In the case when the thrust loading coefficient at the 
propulsor surface is available, this relation takes a different 
form:

(19)

Fig. 3 shows the dependence of the ideal propulsor 
efficiency on the thrust loading coefficients determined at the 
propulsor and “far behind”.

The above formulae refer to the optimum ideal propulsor, 
i.e. a propulsor operating in an unbounded fluid domain and 
having uniform distribution of thrust loading at its surface. 
When these assumptions are not fulfilled (this was the case of 
determination of the tunnel walls influence on the propulsor 
characteristics, as described in [3]), the induced velocity at 
the propulsor is no longer equal to half of the value of this 
velocity “far behind”. The deviation from this depends on the 
degree on non-uniformity of the thrust loading and on the ratio 
of the propulsor surface to the cross-section of the bounded 
fluid domain [3]. The vortex model of an ideal propulsor is 
composed of circular vortices distributed on the side surface 
of the propulsor stream behind the propulsor surface.

Fig. 3. The ideal propulsor efficiency as the function 
of thrust loading coefficients

AN IDEAL FLUID BRAKE

Physically an ideal fluid brake operates in the manner 
similar to an ideal propulsor, but now the pressure dipoles are 
directed in an opposite direction, i.e. against the direction of 
flow. Hence instead of an accelerating surface, there is now 
a decelerating surface and the axial force is generated in an 
opposite direction. The flow velocity is being reduced both 
in front and behind the brake surface (cf. Fig. 4). Similarly as 
before, the principles of momentum and energy conservation 
may be used for determination of the axial force and power. The 

Fig. 2. The dependence of the ideal propulsor efficiency on the relative 
induced velocity “far behind” the propulsor
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formulae are similar to those describing the propulsor, only the 
signs of induced velocity are changed and certain limitations 
in the values of these velocities are introduced.

The axial force (now named the braking force instead 
of thrust) coefficient related to the stream cross-section “far 
behind” is now equal to:

(20)

and the coefficient of power loss in the stream, also related to 
the cross-section “far behind” is equal to:

(21)

Similarly as in the case of a propulsor, for the brake 
operating in an unbounded fluid domain and having uniform 
loading distribution over its surface, the velocity induced at the 
decelerating surface is equal to half the velocity induced at the 
cross-section “far behind” the brake. Hence the ratio between 
the areas of the brake surface and the stream cross-section “far 
behind” may be obtained from the continuity principle:

Consequently, the coefficients of axial force and power 
loading, related to the brake area, have now the following 
form:

(22)

(23)

The functions showing the dependence of the above 
coefficients on the induced velocity are plotted in Figs 5 and 6. 
The range of variation of the relative induced velocity “far 
behind” was limited to 1.0, because larger values would lead 
to physically unrealistic reversed flows.

In case of a fluid brake it is inconvenient to discuss 
its “efficiency”. The more appropriate parameter is its 
effectiveness. For example the ratio of the braking force power 
to the power loss in the brake stream may be proposed as the 
measure of the brake effectiveness:

(24)

Fig. 5. Coefficients of kinetic energy loss in the brake stream depending 
on the relative induced velocity “far behind” mv3

Fig. 6. Coefficients of the braking force depending on the relative induced 
velocity “far behind” mv3

The value of the above parameter varies from 1.0 for mV3 =
= 0.0 to 0.5 for mV3 = 1.0 . The above presented formulae 
contain all relations between kinematic and dynamic parameters 
of an ideal brake.

It must be stressed here, that it is not correct to identify 
the value of CP2i determined by the formula (23) with the 
ideal efficiency coefficient for the axial wind or water 
turbines. This was suggested by Betz [1], who has used 
formula (23) for determination of the maximum ideal efficiency 

Fig. 4. The stream of an ideal fluid brake
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of a wind turbine (cf. Fig. 5). According to his result, quoted 
in almost all publications concerning wind turbines, this 
maximum value is equal to Cpmax = 16/27 = 0.5926, which is 
obtained for: mV3 = 2/3 = 0.6667.

Contrary to the above, in experiments with real turbines 
having finite number of blades and operating in a real, viscous 
fluid (e.g air or water) significantly higher values of CP2 are 
obtained. This results from the fact that the operation of an 
ideal axial turbine should be determined not on the basis 
of the ideal fluid brake, but in the way similar to that 
presented below for an ideal screw propeller. The power of 
a turbine depends on the torque on its shaft and consequently, 
the circumferential induced velocity must be taken into 
account. In this case the principle of conservation of moment 
of momentum is more appropriate for determination of torque 
on the turbine shaft and the performance of the turbine should 
be made dependent on a parameter characterizing the moment 
of momentum.

The energy conservation principle, taking into account all 
components of the induced velocities may also be used, but 
this way of solving the problem is much more difficult and less 
clear. Both ways lead to the same final result.

AN IDEAL SCREW PROPELLER

An ideal screw propeller model takes into account the 
rotational motion, therefore it must have a form of a circular 
disc. In order to determine the relations between the induced 
velocities and the forces on an ideal screw propeller, a more 
complicated vortex model should be used (cf. Fig. 7).

This model is constructed of:
- straight line vortices distributed radially on the propeller 

disc,
- helicoidal tip vortex lines distributed over the cylindrical 

side surface of the propeller stream behind the propeller,
- straight line vortex located along the propeller axis behind 

the propeller, having the total intensity Г,

The velocity field induced by such a vortex system at 
a certain distance behind the propeller (practically about one 
propeller diameter is enough) may be univocally determined by 
the parameters of the vortex system “far behind” the propeller. 
These parameters are:
- radius of the cylinder on which the helicoidal vortices are 

distributed “far behind” R3,

- total intensity of the vortices Г,
- velocity of the undisturbed flow V0,
- pitch of the helicoidal vortex lines tanβ3

The volumetric mean value of the axial velocity induced 
inside the stream (r < R3) by the system of infinite helicoidal 
vortices has a constant value across the stream [4], equal to:

Vxi3 = Γ/(2 π R3 tanβ3)                    (25)

This value applies to a single helicoidal vortex line as well 
as to a system of Z (including Z = ∞) heilcoidal lines having 
the same pitch equal to tanβ3, as long as the total intensity of 
all vortex lines is equal to Г. At the same time the volumetric 
mean velocity induced outside the stream (r > R3) is equal 
zero [4].

The volumetric mean circumferential velocity induced 
inside the propeller stream (r < R3) by the infinite straight line 
vortex located at the propeller axis is equal to:

Vϕi3 = Γ/(2 π r)                         (26)

The volumetric mean of the circumferential velocity 
induced by the system of tip vortices inside the stream (r < 
R3) is equal zero, while this value outside the stream (r > R3) 
is determined by the formula (25) with inverted sign due to 
inverted direction of the tip vortices. Consequently, outside 
the stream the volumetric mean of the circumferential velocity 
induced by the entire vortex system of the propeller (axial 
vortex together with tip vortices) is equal zero. The volumetric 
mean of the radial component of the induced velocity “far 
behind” the propeller is equal zero both inside and outside the 
propeller stream.

When the non-dimensional value of the intensity of vortices 
forming the propeller vortex system is introduced as:

bV3 = Γ/(4 π R3 V0)                   (27)

the relative values (divided by the undisturbed flow velocity 
V0) of the induced velocity components may be expressed by 
the following formulae:

Vxi3/V0 = mV3 = 2 bV3/ tanβ3             (28)

Vϕi3/V0 = 2 bV3/r = mV3 tanβ3/r           (29)

When the velocity field “far behind” the propeller is 
defined in the above way, the relations between this field and 
propeller thrust T, torque Q and power loss may be developed 

Fig. 7. The stream of an ideal screw propeller with vortex lines
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similarly as for an ideal propulsor, making use of the principles 
of conservation of momentum, moment of momentum and 
energy.

It may seem that due to the constant value of the axial 
induced velocity across the stream, the value of propeller 
thrust may be determined analogically as in the case of an 
ideal propulsor. Unfortunately, the presence of the axial hub 
vortex significantly changes the pressure field inside the 
stream. Therefore, the thrust must be determined on the basis 
of the momentum conservation principle applied to the control 
surface S, which includes the side surface of the stream Sb, 
inlet and outlet surfaces S1 and S3 together with the surface 
encompassing the external forces acting on the fluid Sp (cf. 
Fig. 7).

(30)

If the surface Sp (representing the blades of the propeller) 
is excluded from the control surface S, then the thrust is equal 
to the rate of change of fluid momentum on the entire control 
surface and the force generated by the pressure field on the 
remaining part of S:

(31)

As there is  = – V0 in cross-section 1 and there is  = 
= V0 + Vx3 in cross-section 3, the relation between areas of 
cross-sections 1 and 3 may be determined using the principle of 
continuity of flow. However, it should be taken into account that 
on the axis of cross-section 3 there exists a vortex line, which 
should be treated as a vortex singularity (e.g. a Rankine vortex 
model), having cross-section area Sw and radius Rwo. 

(S3-Sw) (V0+Vx3) = S1 V0                (32)

In the case of an ideal propulsor discussed above the same 
pressure p0 acts on the entire control surface S (assuming 
unbounded fluid domain). In the case of ideal screw propeller 
the pressure in cross-section S3 is different than p0 and it is 
a function of radius, therefore an additional pressure term 
must appear in the corresponding equation. The side surface 
of the propeller stream is still a stream surface, where  = 0.
Taking into account the above, the relation (31) now takes the 
following form:

(33)

Substituting the relative induced velocity, this may be 
transformed into:

(34)

The first term of (34) is similar to the corresponding term 
in the formula (9) for an ideal propulsor. Calculation of the 
second term requires additional assumptions:
- the entire vorticity in the flow is concentrated in the limited 

space around the tip and axial vortices; outside this limited 
space the flow is irrotational i.e. potential,

- according to Joukovsky hypothesis the flow is steady in the 
system of co-ordinates rotating with the propeller.

In such a situation the following relation exists between the 
velocity field and the pressure field:

(35)
where:

 – the convective velocity (  is the angular 
propeller velocity), hence:

(36)

Taking into account the equations (28) and (29) and 
reformulating the equation (36), the following equation for the 
thrust correction resulting from the pressure field in the screw 
propeller stream may be obtained:

(37)

where:
rz  = r/R3

rw = Rw/R3 is the normalized radius of the axial vortex

The above integrals may be solved analytically and 
ultimately they lead to the formula for the thrust of an ideal 
screw propeller:

(38)

Now the thrust loading coefficient related to the propeller 
stream cross-section “far behind” is equal to:

(39)

The power loading coefficient, related to the screw propeller 
stream cross-section “far behind”, may be determined from the 
principle of conservation of moment of momentum. In this case 
only the circumferential component of the induced velocity is 
important. This leads to the formula:

(40)

where:
 – radius-vector from propeller axis

 – unit normal vector at the control surface S-Sp

An appropriate selection of the control surfaces enables 
elimination of some of the integrals. On the entire surface S-Sp 
the vector multiple  is zero, eliminating the pressure 
term. On the stream surfaces the scalar multiple  is zero. 
On the cross-section S1 the following relations hold:
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and on the cross-section S3 the following relations hold:

Taking the above into account, together with the continuity 
equation, the following is obtained:

(41)

After substituting the expressions (28) and (29) for the 
components of the induced velocity, the following equation is 
obtained for the power of an ideal screw propeller:

(42)

where:
λ = V0/(ω0R3)

The power loading coefficient, related to the area of the 
propeller stream cross-section “far behind”, may be now 
determined as:

(43)

The efficiency of an ideal propeller is defined as the ratio 
of the power of thrust to the power loss in the propeller stream 
”far behind” the propeller:

(44)

The formula (44) does not resemble the formula (16) for 
the efficiency on an ideal propulsor. However, it is similar 
to the formula used in the vortex theory of propellers for 
determination of the so called induced pitch for the propeller 
blades having optimum radial distribution of circulation:

tgβ = λ/η                              (45)

where:
λ = V0/ωR

The formula (44) may take the form similar to formula (16) 
if the following definition of tanβ3 is used:

(46)

where:
Vxw and Vφw – the components of the own velocity of the tip 

vortex. For an ideal propeller they are equal 
half of these components induced inside the 
propeller stream [4]. After some reformulations 
the following equation is obtained:

(47)

After substitution of (47) into (45) the formula similar to 
that for the efficiency of an ideal propulsor is obtained:

(48)

The formula (48) differs from the formula (16) in two 
aspects:
- the numerator is smaller than 1
- the denominator includes an additional factor

Both these differences cause reduction of the ideal propeller 
efficiency in comparison with an ideal propulsor. Therefore, the 
efficiency of an ideal screw propeller is always smaller than 
that of a corresponding ideal propulsor. Moreover, the ideal 
screw propeller efficiency depends additionally on the pitch of 
the helical vortex lines and on the diameter of the axial vortex 
singularity. Both formulae coincide when tanβ3 = 0. In this case 
the helical vortices of an ideal propeller are reduced to the ring 
vortices of an ideal propulsor.

The radius of the axial vortex singularity requires further 
explanation. In case of an ideal screw propeller operating in 
water the cavitating vortex kernel may determine this radius. 
In case of an ideal screw propeller operating in gas (e.g. in air), 
there exists an exact relation between the pressure and volume 
(or density) based on a perfect gas model. In this case the axial 
vortex may be treated as a perfect whirlwind having a kernel of 
zero vorticity. The radius of such a kernel may be substituted 
into all above formulae in the place of rw.

AN IDEAL AXIAL WIND TURBINE

Similarly as in the case of an ideal propulsor and ideal 
brake, there exists a close analogy between an ideal screw 
propeller and an ideal axial wind turbine. Namely, they both 
may be described by the formulae characterizing the vortex 
system “far behind”:
- radius of the cylindrical propeller stream “far behind” R3,
- total intensity of the vortices Г,
- undisturbed flow velocity V0,
- pitch of the helical vortex lines tanβ3.

The vortex system of an ideal axial turbine, shown in Fig. 8, 
is composed of the same elements as the corresponding system 
for an ideal propeller:
- straight line vortices distributed radially on the propeller 

disc,
- helicoidal tip vortex lines distributed over the cylindrical 

side surface of the turbine stream behind the turbine,
- straight line vortex located along the turbine axis behind 

the turbine, having the total intensity Г.

Of course it must be remembered that the vorticity vectors 
for the propeller and for the turbine have opposite direction.

In this case the velocity field is related to the parameters 
of the vortex system in the same way as in the ideal screw 
propeller. The relations (25) – (29) have the same form, but the 
parameters mv have opposite sign. The relations for the axial 
force T (38) and for the power Pi (42) have the same form, but 
the sign of mv3 is changed:

(49)

(50)

The definitions of all parameters are the same as for an ideal 
screw propeller. Consequently, the formulae for the coefficients 
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of axial force loading CT3 and power loading CP3 are similar to 
those for an ideal propeller:

(51)

(52)

But now the formula for the pitch of the helical lines tanβ3 
does change into:

(53)

from which the following relation may be developed:

tanβ3/λ3 = 1-1/2mv3(1+tan2β3)            (54)

Taking into account the formula (54) the relation (52) may 
be transformed into the form similar to (21):

Cp3i = -2 mv3 (1-mv3)(1-1/2mv3(1+tan2
b3))(1-rw

2)  (55)

In this way it may be proved that in the system dependent 
on the axial component of the induced velocity mv3, the limiting 
maximum values of the power coefficient Cp3i are even smaller 
than for the ideal fluid brake (assuming that tanβ3 = 0 corresponds 
to the brake model and leads to the formula (21)).

Taking into account that the axial velocity component is 
only weakly related to the moment of momentum (i.e. to the 
turbine torque) and that the model experiments indicate values 
of Cp higher than those obtained from the ideal fluid brake, the 
analysis of the turbine operation should be performed in another 
system of co-ordinates. For example, the coefficient bv more 
closely characterizes the moment of momentum in the flow.

Considering the definition formula for mv3, the formula for 
CP3i takes the form:

(56)

Fig. 8. The stream of an ideal axial turbine with vortex lines

As in the case of a turbine the efficiency is not defined 
in the same way as in the case of propeller, the above 
formulae complete the relations between the dynamic and 
kinematic parameters. The radius of the vortex singularity 
may be determined in the above described way. Taking into 
consideration the continuity equation in the stream behind the 
turbine, the power loading coefficient at the turbine may be 
easily determined:

(57)

This power loading coefficient is in fact the effectiveness of 
utilization of the energy of the oncoming flow by the turbine. 
The formula (56) enables further analysis of the influence of 
different parameters on the turbine efficiency described by 
CP3i:
- the parameter (1 – rw), characterizing the vortex singularity, 

has little influence on the turbine efficiency,
- the parameter bv2 = Г/4πV0R2 characterizes the circulation 

of the axial vortex and the moment of momentum in 
the stream. This is a very important parameter, which 
determines the torque and power of the turbine,

- the parameter tanβ2 characterizes the pitch of the tip vortex 
lines at the turbine, which is difficult to be determined 
precisely,

- the parameter λ2 characterizes the location of the turbine 
operating point on the co-ordinate of the advance 
coefficient J.

It is difficult to determine the maximum attainable value of 
CP2i using the formula (57) and the above parameters. Clearly, it 
will be not equal to the Betz limiting value of Cpmax = 0.5926, 
determined for an ideal fluid brake.

The structure of formula (57) implies that the maximum 
values of Cp are attained when:
- the parameter λ2 reaches minimum values,
- the parameter Г describing circulation of the hub vortex, 

corresponding to bV, reaches the highest values,

Quantitative determination of these parameters is difficult. 
Certain idea of this aspect may be drawn from the analysis of 
the results of calculations for wind turbines with finite number 
of blades presented in the next section.
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AN AXIAL WIND TURBINE WITH THE 
FINITE NUMBER OF BLADES

Results of calculations showing that the effectiveness 
of a real axial wind turbines Cpi may exceed the upper limit 
defined by Betz have been obtained already in the 1990s, 
when the computer program for calculation of ship propeller 
characteristics CHAHYD was adapted for calculations of the 
axial wind turbines.

The program CHAHYD, based on the vortex lifting surface 
theory, was very thoroughly verified experimentally in its 
application to ship propellers. Similar verification with respect 
to wind turbines was missing until 2010 [2]. Fig. 9 shows an 
example of such verification. In this figure the coefficients 
of power loading Cp, axial force KT, torque Kq obtained 
experimentally and computed for an 8-bladed turbine, are 
shown as functions of the advance coefficient J. In this figure 
the curve Cp calculated for zero drag coefficient is also plotted. 
In this case the maximum value Cp = 0.58 is already close to 
the limiting value determined by Betz.

The experimentally verified results of calculations are used 
to formulate the following statement:

The limiting value Cpmax = 16/27 = 0.5926 as determined 
by Betz for an ideal brake may take significantly higher 
values for an ideal axial turbine.

In the following figures the results of calculations of a 8-
bladed wind turbine have been shown for four cases:
- model wind turbine having pitch coefficient P/D = 1.0 

and viscous drag coefficient CD = 0.010 (these results are 
correlated with model experiments [2]),

- the same model with P/D = 1.0 but with zero viscous 
drag,

- the model with pitch reduced to P/D = 0.8 and zero viscous 
drag (CD = 0.0),

- the model with pitch reduced to P/D = 0.6 and zero viscous 
drag (CD = 0.0).

As may be seen in Fig. 11 for the blade pitch P/D = 0.8 the 
Cpmax value already exceeds the Betz maximum of 0.5926. Still 
higher values of Cpmax are obtained for a turbine with P/D = 0.6. 
If such values are obtained for a real wind turbine operating 

Fig. 9. Experimental verification of the program CHAHYD in application to wind turbines

Fig. 11. Calculated maximum values of Cp obtained with viscous drag 
coefficients Cd = 0.008 and Cd = 0.0 as functions of the turbine pitch 

coefficient P/D

Fig. 10. Results of calculations of the effectiveness Cp 
for an 8 bladed wind turbine

in a viscous flow and having finite number of blades, then the 
corresponding values for an ideal wind turbine must be even 
higher. In Fig. 12 the results for wind turbines having different 
numbers of blades are presented.

The quantitative assessment of terms in equation (57) 
is difficult because the vortex model of a wind turbine with 
finite number of blades is markedly different from the ideal 
turbine with infinite number of blades. First of all, the fields 
of induced velocity are different and the limits of the turbine 
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stream are not univocally determined. It is difficult to determine 
the parameters bV and mV for a turbine with finite number of 
blades. However, the above presented results of numerical 
calculations lead to the following recommendations for the 
wind turbine designers:
- the design point of an axial wind turbine should be located 

at low advance coefficients,
- the optimum pitch of a wind turbine blades lies near the 

value P/D = 0.6,
- the computed effectiveness coefficient Cp of a turbine 

increases with the number of blades, but for real turbines 
operating in viscous fluid and suffering from flow 
deformations near the hub, which grow with increasing 
number of blades, the number of blades should not be too 
high.

CONCLUSION

Analyzing the above results it may be concluded that the 
models of ideal propulsor and ideal screw propeller correlate 
well with the experimental data. The efficiency of real propellers 
is always lower than that of the ideal ones and the effectiveness 
coefficient (defined as the ratio of real propeller efficiency to 
the efficiency of an ideal one) characterizes correctly the losses 
connected with fluid viscosity and with the finite number of 
real propeller blades.

The problem of turbines is significantly different, 
namely:
- there is no correlation between the experimental results and 

the results of calculations,

Fig. 12. Calculated maximum values of Cpi and Cp (Cd = 0.008) as functions 
of the turbine number of blades

- the analogy between a turbine and an ideal fluid brake, 
for which the axial induced velocity component mV 
is the basic parameter defining the performance, is 
a misunderstanding,

- the turbine performance is characterized by its torque: 
the model of an ideal turbine reduces the values of Cp as 
function of mV even further than the model of an ideal 
brake, but as it was mentioned earlier the torque is not well 
correlated with mV,

- when the results of model experiments are accepted as 
more trustworthy than calculations based on ideal models, 
the inadequacy of the Betz theorem for the determination 
of the limiting maximum value of the turbine effectiveness 
must be also accepted.
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