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INTRODUCTION
 
Development of control systems in recent years is 

determined by the expansion of relatively cheap computing 
power. This process is obviously present in the field of ship 
motion control systems too. As a result one can observe 
a progress from course keeping autopilots to trajectory tracking 
autopilots and further to integrated motion control systems with 
functionality of route planning, anti-collision subsystem and 
advanced multi-variable autopilot [3].

Fig. 1. Block diagram of the proposed extension 
of the ship motion control system

If the system is to be fully autonomous it should incorporate 
block of trajectory determination for in-harbour and harbour 
approaching manoeuvres. This task is significantly different 
from open waters or restricted areas anti-collision manoeuvres. 

The ship is moving with relatively small velocities and 
trajectory should be determined simultaneously for position, 
transversal and longitudinal velocities as well as heading 
signals. Trajectory generator has to cooperate with multi-
variable autopilot capable to control all of mentioned signals 
[3, 4, 8]. The proposed location of such block in ship motion 
control system is shown in Fig. 1. 

Present paper describes the results of application of 
reinforcement learning (RL) algorithms to the generation of 
a ship trajectory. RL applications in the ship motion control 
system are quite rare. There are only a few examples in the 
openly accessible bibliographical sources [7, 9, 12].

In the first section the idea of the reinforcement learning 
and Markov decision processes (MDP) as a formal notation 
of RL problem are discussed, They deliver theoretical 
background of the algorithms. In the second and third sections 
learning algorithms in the discrete and continuous domains are 
presented. The results of computer simulations are shown in 
section fourth. Fifth section concludes the paper.

REINFORCEMENT LEARNING AND 
MARKOV DECISION PROCESSES

In reinforcement learning procedure a controller (agent) 
interacts with the process (environment) by means of three 
signals: a state signal which determines current state of the 
process, action signal which is used by the controller to 
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influence the process and a reward given by the reward function 
which gives the measure of the controller performance (see 
Fig. 2). In each consecutive time step the controller observes 
a state of a process and issues an action to move the process to 
a next state. At the same moment the reward function, based on 
a state and chosen action, evaluates this move issuing value of 
reward. In a next time instance whole procedure is repeated. 
The goal of the reinforcement learning process is to find (learn) 
a strategy of action selection for the controller which maximises 
the cumulative reward in a long term.

Fig. 2. Interactions in the reinforcement learning process

The dynamics of the process can be deterministic or 
stochastic. In this paper the deterministic case will be discussed: 
it means we assume that in particular state choice of certain 
action always gives the same next state1). Extension to the 
stochastic case can be easy find in the references [1, 2, 10]. 

It is easy to notice that the problem of reinforcement 
learning can be described in the Markov decision process 
(MDP) formalism. Markov decision process is defined as 
a quadruple (X, U, f, p) where X = {x1, x2, ..., xn} is finite 
set of states; U = {u1, u2, ..., un} is finite set of actions and 
f: X × U → X is transitions function determining the state 
in a next time step:

xk+1 = f(xk, uk)                            (1)

At the same time the controller receives the value of reward 
according to the reward function ρ: X × U → [ :

rk+1 = ρ(xk, uk)                            (2)

where we assume that ||ρ||∞ = supx,u|ρ(x, u)|

The controller chooses action according to its own policy 
h: X → U, using:

uk = h(xk)                                (3)

Taking into account above definitions we can state that 
given functions f and ρ as well as current state xk and action uk 
are sufficient to determine the next state xk+1 and reward rk+1. 
This fulfils Markov property.

LEARNING IN DISCRETE SPACE 

As we mentioned in the previous section, the goal of RL 
is to find an optimal policy that maximises the return from 
any initial state x0. The return is cumulative value of rewards 
collected along a trajectory originating in x0. There exist a few 
types of return definitions. We will use one of them; infinite 
horizon discounted sum:

(4)

The infinite horizon return has better theoretical properties 
leading to the stationary optimal policies. But in a practical 
case the sum is limited by the number of steps in a trajectory 
between initial and final states. 

Discount factor γ controls a trade-off between the quality of 
the solution and convergence rate of RL algorithm and usually 
is set by trial and error procedure.

A convenient way to represent policies are their value 
functions [10]. In an area of RL two types value functions are 
used: state value function (V) and state-action value function 
(Q). The latter one is more general and incorporates the first. In 
this section algorithms based on the Q-functions are presented. 
It is a mapping Qh: X × U → [  and represents a reward of 
choosing action u in a state x according to the followed policy 
h cumulated with the return from the next state [1]. 

(5)

The optimal Q-function is defined as the best Q-function 
that can be obtained by any policy:

(6)

Any policy h* that selects at each state an action with the 
largest optimal Q-value i.e., that satisfies;

(7)

is optimal. In general, for a given Q-function Q, a policy h 
that satisfies:

(8)

is said to be greedy in Q. So finding an optimal policy can be 
done by first finding Q*, and then using (7) to compute a greedy 
policy in it. If a process for which the learning is applied (Fig. 
2) is known (we have exact model of the process), Q-functions 
Qh and Q* can be easily found from the iterative Bellman 
equations [2, 10]. This leads to the dynamic programming 
Q-iteration algorithms [1]. 

In the case of RL the model of the process is unknown, so 
the next state and reward values are collected in the interactions 
with it. Therefore these algorithms are often called model-free. 
One of them, most widely used, is Q-learning:

(9)

where ak ∈ (0,1] is the learning rate. The term between square 
brackets is the temporal difference, i.e., the difference between 
the updated estimate  of the optimal 
Q-value of (xk, uk) and the current estimate Qk(xk, uk).

As the number of transitions k approaches infinity 
Q-learning asymptotically converges to Q* if the state and 
action spaces are discrete and finite, and under the following 
conditions [11]:

- the sum  gives a finite value, whereas the sum  
produces an infinite value.

- all the state-action pairs are (asymptotically) visited 
infinitely often.

The first condition is easy to satisfy. To fulfil the second 
one, a stochastic parameter ε is introduced. It represents the 
probability of selection of any action in encountered state. This 
is called exploration. On the contrary, the controller should 
also exploit current knowledge to improve performance by 

1) This condition is partly violated by the need of exploration of 
the discrete RL algorithms [10]. 
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selecting greedy actions in the current Q-function. The balance 
of exploration-exploitation is usually implemented in a form 
of ε-greedy exploitation [10].

The complete algorithm, developed from equation (9) is 
presented in the frame Algorithm 1 in this section. This version 
of Q-learning was used in the computer simulations. 

LEARNING IN CONTINUOUS SPACES 
USING FUNCTION APPROXIMATORS

Discrete algorithm for RL has a significant drawback. 
It requires an exact representation of a value function and 
policy. It means distinct values of the return estimates for 
each state-action pair has to be stored as well as actions for 
every state. When an action space or state space is large this 
can be extremely difficult or practically impossible. To reduce 
a number of parameters that has to be stored approximation 
techniques are used. 

Generally in the RL algorithms approximation is used 
not only for function representation. Policy iteration which 
will be introduced in the subsequent parts of this paper must 
repeatedly solve potentially difficult maximisation problems 
over the action variables (policy evaluation). This can be done 
by sample-based approximation. In this research parametric 
approximation was used.

Parametric approximators are mappings from a parameter 
space into a space of functions [6]. The functional form of the 
mapping and the number of parameters are usually set by the 
skilled operator in advance and do not depend on data collected 
during the interaction with the process. The parameters are 
tuned using the data about target function.

Let as consider the Q-function approximator parameterised 
by an n-dimensional vector θ. The approximator is the mapping 
F: n →  where n is the parameter space and  is the space 
of Q-functions. Every parameter vector θ provides a compact 
representation of a corresponding approximate Q-function:

(x,u) = [F(θ)](x,u)                      (10)

where [F(θ)](x,u) denotes the Q-function evaluated at the state-
action pair (x,u). Therefore, instead of storing distinct Q-values 
for every pair (x,u), it is only necessary to store n parameters. 
But, it must be noticed that, since the set of Q-functions represent 
by F is only a subset of  any arbitrary Q-function, it can be 
reproduced only up to the certain approximation error [5]. 

The mapping F(θ) can be generally non-linear. However, 
linearly parameterised approximators are preferred because they 
simplify an analysis of resulting RL algorithm. In presented 
algorithms we use linear approximators built with n Gaussian 

normalised radial basis functions (BF) φ1, ... φn: X × U → [ 
and n-dimensional vector of parameters θ. Approximate values 
were therefore computed as: 

(11)

Let us consider now model-based value iteration with 
parametric approximation. This procedure explains the ideas 
used in a final algorithm. One can observe that iteration formula 
(9) rewritten for model-based case can be generally stated as:

Ql+1 = T(Q1)                               (12)

for consecutive l iterations, where T is Q-iteration mapping [1]. 
In approximate Q-iteration Q1 cannot be represented exactly. 
Therefore, an approximation (10) has to be used:

(13)

Using this approximation in iteration formula (12) leads to:

(14)

But the function T cannot be stored explicitly either. 
Instead it is represented by approximation using new parameter 
vector θl+1. This vector is specified by the projection mapping 
P :  → n:

(15)

which should keep 1+1 = F(θ1+1) as close as possible to . 
Usually a least-squares regression is chosen for P. Finally, 
approximate Q-iteration is a composition of mappings:

θ1+1 = (P ◦ T ◦ F)(θ1)                     (16) 
The algorithm should be stopped when suitable parameter 

vector  is found. Eventually the estimate  should be kept 
as close as possible to the fixed point θ* of iteration (16). The 
whole procedure is illustrated on Fig. 3. The cycle of mappings: 
Q-value approximation (F), Q-iteration (T) and projection back 
to parameter space (P) is repeated until fixed point θ* is reached.

Fig. 3. An idea of approximate Q-iteration

Similar considerations lead to the analogous approximate 
policy evaluation algorithm for Q-functions. This algorithm 
starts from arbitrary chosen vector of parameters  and updates 
this vector in every iteration τ using:

(17)

As we mentioned before, approximators used in these 
considerations have linear properties. Based on this, it is 
possible to derive projected Bellman equation. Because state 
and action spaces are now finite by assumption we can rewrite 
policy evaluation mapping Th.

(18)
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In a linear case approximate Q-function that has the form 
of (13) can be written as:

(19)

where φ(x,u) = [φ1(x,u), ..., φn(x,u)]2 is the vector of BFs 
and θh is the vector of parameters. This relationship satisfies 
approximate version of Bellman equation (projected Bellman 
equation):

(20)

where Pw performs a weighted least-squares projection onto 
the space of approximate Q-functions spanned by the BFs. To 
derive proper algorithm let us rewrite (18) in a matrix form:

(21)

Using symbols φ to denote BF matrix and w to denote 
diagonal weight matrix of Pw we can write:

 = φθ                                   (22)

and Bellman equation (20) as:

PwTh( h) = h                          (23)

Rearranging this equation and substituting: 

Г = φTwφ
(24)

the projected Bellman equation can be written in a final 
form:

Гθh = γΛθh + z                          (25)

Solving this equation leads directly to the Least-Squares 
Policy Iteration (LSPI) algorithm presented in a frame 
Algorithm 2 [6]. 

This procedure was employed in simulation software 
used to the generation of the ship trajectory in a continuous 
state space. The next section presents some of the simulation 
results. 

 
EXAMPLE OF SHIP TRAJECTORY 

GENERATION FOR NAVIGATION IN 
RESTRICTED WATERS

The simulation experiments were done in the MATLAB 
environment. First the Q-learning algorithm was tested. Two 
variants were implemented:
- Classic one: where the state transition can be done only 

to the neighbour-state in the discrete grid. It means that 
there are seven possible actions to chose. Six of them are 
“king moves” [10] to the neighbour state, and seventh is 
the loopback to the current state. The value function was 
set to -1 for all state transfers except last move to the goal 
state which yields 0 reward2). 

- Modified one: prepared to overcome limitations of 
neighbour-state only transitions. In this case action chosen 
can “jump” from every state to the any of states that are not 
blocked by obstacles. The reward is equal to the negative 
Euclidean distance from k + 1 state to the goal state. In this 
case action value function has to store n2 distinct values, 
where n is the number of states in the whole grid.

The results of the simulation for classic (step-by-step) 
variant are depicted on Fig. 4 and Fig. 5. Q-value function 
on Fig. 4 is marked by colours. More red for particular state 
means that the return (negative) associated with this state is 
bigger. It is easy to notice that trajectories from all states will 
tend towards the goal state; even starting point for the learning 
algorithm was not changed. This property is a result of ε-greedy 
exploration part of the Algorithm 1. 

Fig. 4. Q-value surface of Q-learning with step-by-step type strategy. 
Corresponding proposed trajectory is presented on the Fig. 5. 

Obstacles are dark blue. (2500 episodes)

The corresponding greedy trajectory originating from the 
starting state (9, 14) is shown on Fig. 5. It can be easy noticed 
that it is not unique trajectory passing minimal number of state 
on the way to the goal. 

Results of the second variant (point-to-point) of the Q-
learning algorithm are presented in Fig. 6. In this and next figure 
the colour map for values is reversed. Except modifications 
mentioned above, one more change to the standard algorithm 

2)  Very often the reward is of negative value. It means it works as 
a “punishment”, not a “reward”. However it is a standard in RL not 
to change the term “reward” even for negative values.
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was done. Along with the obstacle collision check in every step, 
there is a test if there exists straight, direct path from the current 
state to the goal. If so, then the state transition is done directly 
to the goal and algorithm finishes. This modification caused 
brown “shadows” over certain states of the grid. Because these 
states lie on the “open” side of the obstacles, learning algorithm 
did not “visit” them. The proposed modifications accelerated 
convergence of the solution. 

Fig. 5. Final greedy trajectory of Q-learning with step-by-step type strategy 
- see Fig. 4 (2500 episodes)

Fig. 6. Results of Q-learning with point-to-point type strategy. 
Proposed trajectory is marked by the red doted line. 

Obstacles are white. (15 000 episodes)

On the contrary to the step-by step variant this one produces 
unique, broken-line trajectory. Unfortunately, this version is 
exceptionally computing power demanding. On the Fig. 4 
there are 15 x 15 = 225 states in the grid. Multiplying them by 

7 possible actions yields 1575 state-action pairs for Q-function 
evaluation. The same grid for the second case will give 
(15 × 15)2 = 50525 state action pairs to process. This number 
will expand very quickly if one wants to improve the precision 
of the ship positioning by the grid refinement or supplement 
a heading angle. 

It means that Q-learning algorithms in a discrete version 
are of limited usability for manoeuvring ship trajectory 
generation.

Last figure presents the LSPI approximate Q-value surface 
(precisely: one of the cross sections through it) given by linear 
approximation over a (5x5) grid of RBFs. Additionally, action 
space was also approximated by (11x11) grid of RBFs. As 
one can notice, there is not the starting point for the learning 
algorithm. Version of the LSPI algorithm implemented in 
the research works in a batch mode doing calculations off-
line for all previously collected data samples. The starting 
point was set to show only an exemplary trajectory. Whole 
surface is parameterised, therefore the problem of the grid 
scale mentioned earlier vanishes. The same factor makes it 
susceptible to heading control extension.

Fig. 7. Least-Squares Policy Iteration. Surface of approximate 
Q-value function with proposed trajectory. 

Obstacle is white. (11 iterations for 17000 samples)

CONCLUSIONS

Results of the research presented in a previous section 
allow conclude that:
-  The discrete Q-learning algorithms can be used for ship 

trajectory generation only when precision of the motions 
is not of major importance or the maneuvring area is 
significantly small.

- Point-to-point version of the algorithm is very vulnerable 
to the curse of dimensionality.

- Off-line, continuous domain, LSPI algorithm seems to 
be good alternative to the discrete Q-learning. To test all 
its properties in a context of ship trajectory generation, 
it should be expanded to incorporate heading set-point 
values and, in a next step, longitudinal and transversal 
velocities. 
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