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INTRODUCTION

Resistance performance has a significant effect on the 
operating cost of civil ships and the survivability of military 
ship. In the optimization design of the hull, it is the total 
resistance that people care about most [4, 19], which is 
generally the sum of the viscous resistance and the wave-making 
resistance. In a sense, once the principal dimensions of a hull are 
determined, there is no significant wetted surface change and the 
optimization design of hull form is to obtain a hull form with the 
minimum wave-making resistance [1]. Further more, for high-
speed ship, it is reasonable to take the wave-making resistance 
as a major objective in the optimization design because of its 
high proportion in the total resistance [22].

Wave-making resistance can be greatly reduced by 
employing excellent hull form or optimization of some 
existing hull offsets. Shape optimization is a growing field 
of interest in many areas of research, such as marine design 
and manufacturing. Wilson, Hendrix, and Gorski [20] 
develop a computational tool set and process framework help 
designers to decide the hull shape, which had great effect on 
its hydrodynamic characteristics. 

In order to obtain a hull with the minimum wave-making 
resistance, designers often try to make improvement of parent 
hull. This requires lots of ship design experience, without 
mentioning the uncertain improvement [21]. Chen and Guang 
[2] optimized the shape of the after hull based on the desired 
wake distribution, using B-spline surface method to generate 

the surface geometry of ship. Peri, Rossetti, and Campana [16] 
carried out numerical shape optimization of a tanker ship with 
the aid of CFD techniques and experimentally verified. The hull 
form optimization often concerns one of the most important 
applications of wave-making resistance theories. Grigoropoulos 
and Chalkias [7] developed a formal methodology for the hull 
form optimization, using parametric hull form modeling to 
generate the variant hull forms, in which Rankine-source panel 
method and strip theories were both involved.

Development of a three-dimensional hull fairing form is 
one of the main requirements in the design of a marine vehicle. 
The final hull form must satisfy both the desired shape and 
performance characteristics, such as resistance performance 
[17]. Ghassemi and Ghiasi [6] developed a numerical program 
to determine the total resistance of planing crafts, and four 
different hull forms of Series 62 model 4666 planning craft were 
presented as calculation examples. A parametric approach to 
design of hull form was studied by Zhang, Zhu, and Leng [23], 
which provided the means for quick generation and variation 
of hull form for the hydrodynamic optimization of hull form. 
Pérez, Clemente, Suárez, and González [14] used explicit 
spline curves to make a wire model of the ship stations. An 
inverse design algorithm in determining the optimal shape of 
the bulbous bow was developed by Chen, Huang, and Fang [3], 
with the Levenberg-Marquardt method and B-spline surface 
control technique utilized.

Genetic algorithm has been used widely in hull design 
since it appeared several yeast ago. A Multidisciplinary design 
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optimization method was used to optimize the DTMB model 
ship 5415 by Peri and Campana [15], while Gammon [5] 
conducted optimization to fishing vessels applying a Multi-
Objective Genetic Algorithm. Li [10] proposed a hybrid 
approach for multi-objective optimization of ship’s principal 
parameters in conceptual design, employing a multiple 
objective genetic algorithm. Lu, Lin, and Ji [11] calculated 
the free trim hydrostatic ship characteristics applying the 
genetic algorithm, and some necessary improvement was 
made in practice to speed up the evolution. Kim and Yang [9] 
utilized A multi-objective genetic algorithm to develop a hull 
surface modification technique for the CFD-based hull form 
optimization.

Mathematical ship enjoys popularity among ship designers 
due to its good adaptability and excellent processing 
performance [12].The paper is going to develop a method for 
mathematical hull lines design, including the optimization 
calculation of the ship resistance. A kind of quadratic curve is 
used to generate a certain hull of the minimum wetted surface, 
and smoothness of the designed lines is discussed. A genetic 
algorithm is used to modify cross section of the hull and 
Michell integral is applied to solve the wave-making resistance 
in the optimization procedure. Numerical calculations 
and comparative experiments are conducted to assess the 
availability of the method.

HULL LINES DESIGN

Cross section constructed by quadratic curve

Quadratic curve is applied to construct cross section of the 
hull; the main process is discussed in the following parts. There 
are some conditions must be meet first:

Condition 1: The ship has only one symmetric plane called 
the centerplane. The shape of underbody of the ship is shown 
in Fig. 1.

Fig. 1. Underbody of the hull

Condition 2: Half of the cross section presents with certain 
types of shape as Fig. 2 shows.

Fig. 2. Certain types of cross section constructed with arc curve

Condition 3: Both the middle buttock line and designed 
waterline are fairing.

A Cartesian coordinate system, as shown in Fig. 1, is defined 
with the x-axis coincident with heading direction of the ship, 
and positive distance measured upstream. Let L be hull length, 
so the value of X ranges in [0, L]. Middle line L1 is indicated 
with function b(x), designed waterline L2 with function a(x), 
and half of cross section area with function S(x). Within the 
scope of [0, L], a(x), b(x) and S(x) are all bounded and smooth 
functions, and their first derivatives are continuous. As the 
hull has a symmetry plane called the middle sheer plane, only 
hull lines and section areas of the starboard side (y ≥ 0) are 
discussed. The paper is to discuss the underbody of hull, and 
lines above the designed waterline will not be involved.

The shape of the underbody, which can be expressed by 
a bunch of body lines, is indicated with a mathematical equation 
as follows:

(1)

Where c = c(x) is an undetermined parameter used to modify 
the cross section. A new parameter β is introduced:

β(x) = 2S(x)/a(x)b(x)                   (2)

Assuming that cross section area of the hull reaches the 
maximum when x = L/2, that is to say, there exists x0 ∈ [0, L/2] 
making β(x0) = 1.

Mathematical analysis of the approximate 
minimum wetted surface area 

To gain a hull of good resistance performance, mathematical 
process is taken to analysis character the quadratic curve that 
constructs the cross section. As we know, arc length is the 
shortest to that of any curve with the same area. A comparison 
of the length between the curves mentioned above is taken in 
this section. 

As it is shown in Fig. 2, the circular arc is defined with 
radius r and central angle 2θ. We have:

(3)

Let lcircle be length of the circular arc, then:

lcircle = 2rθ                                 (4)

The quadratic curve can be expressed as:

(5)

Let lconic be length of the quadratic curve, then:

(6)

Area of cross sections:

(7)

The discussion of Eq. (1) for x < x0, x = x0 and x > x0 is 
detailed in appendix A and Length of the two kinds of curve 
mentioned above are calculated. Solutions of the Eq. (1) are 
discussed as well and the conclusion becomes:
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- when 0 ≤ x < x0, namely β(x) = 2S(x)/a(x)b(x) < 1, and 
c > 2/a(x)b(x) Eq. (1) has at least one nontrivial solution;

- when x = x0, namely: β(x) = 2S(x)/a(x)b(x) = 1, and 
c = 2/a(x)b(x) Eq. (1) has at least one nontrivial solution;

- when x < x0 ≤ L/2, namely: β(x) = 2S(x)/a(x)b(x) > 1, and 
c < 2/a(x)b(x) Eq. (1) has at least one nontrivial solution.

With a set of cross sections, of which breadths, draughts 
and areas are limited in a certain range, one can calculate the 
length of the designed quadratic curve and the circular arc. 
Most of the relatively error is less than 0.05% by comparing 
the designed quadratic curves with circular arcs, as illustrated 
in Fig. 3, and the maximum error is only 0.11%. 

Fig. 3. Length error of the designed curve to circular arc at every station

It is not difficult to get a conclusion that hulls consisted of 
the designed cross section curves can be approximately seen 
as hulls of the minimum wetted area.

Simple mathematical discussion of rationality of 
the designed hull lines

In the following part, whether the designed lines are 
accordant with the practical situation is discussed, that is:
- whether the first derivatives with respect to x of any 

waterline and buttock line are smooth.
- whether changes of signs of the second derivative with 

respect to x of any waterline and buttock line are in 
accordance with general law of hull lines.

A theorem for implicit differentiation is introduced firstly. 
Suppose that F(y, z) meets the following conditions:
- in the domains |z – z0| ≤ δ and |y – y0| ≤ λ, both Fz and Fy 

are continuous.
- F(y0, z0) = 0
- Fy(y0, z0) ≠ 0

These lead to some conclusions:
- in a certain neighborhood of point (y0, z0), F(y, z) =0 uniquely 

determines a function y = f(z); and y0 = f(z0). In other words, 
y = f(z) is defined within a certain neighborhood O(z0, η) 
of z0, meeting F(z, f(z)) ≡ 0 and y0 = f(z0);

- y = f(z) is continuous in the domain O(z0, η);

The first derivative of y = f(z) is continuous in the domain 
O(z0, η), and at any point where Fy ≠ 0, y’ = – Fz(y, z)/Fy(y, z).
 On the basis of the theorem mentioned above, the implicit 
function that c = c(x) meets is analyzed as follows:
- when 0 ≤ x < x0, namely β(x) < 1, Eq. (A5) can be 

expressed as:

(8)

- when x < x0 ≤ L/2, namely β(x) > 1, Eq. (A13) can be 
expressed as:

(9)

For arbitrary x ∈ [0, x0) or x ∈ (x0, L/2), it is easy to validate 
that F(x, 2/a(x)b(x)) = 0, Fc(x, 2/a(x)b(x)) ≠ 0, where Fc and Fx 
are continuous in a small enough neighborhood of x.

In that case, it can be concluded that c = c(x) is continuously 
differentiable function in domain [0, x0) and (x0, L/2]. Since 
both equations have the solution c(x0) = 2/a(x0)b(x0), c = c(x) 
is continuous in the domain [0, L/2]. A complete process is 
detailed in appendix B.

The first and second derivative of y can be written as:

(10)

(11)

It is clear that the waterlines of the hull are feasible from 
the discussion above. Since y and z are interchangeable in 
Eq. (1), a similar conclusion about the buttock lines can be 
got as well.

Wave-making resistance optimization and 
sample designs

Wave-making resistance calculation

Since [13] published one of his scientific papers in 1898, 
the famous Michell integral has made great achievements in 
ship wave-making resistance and hull optimization. The basic 
formulas of Michell integral are written as follows [18]:
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(12)

(13)

(14)

Where η(x, z) defines the geometry of the hull, g is 
acceleration of gravity and U indicates the moving velocity 
of hull. As have been defined above, x-axis is coincident with 
heading direction of the ship, and z-axis is coincident with 
draught direction the ship.

In the research, a numerical program is conducted applying 
Michell integral to calculate wave-making resistance of hulls. 
Before the calculation, the Wigley N43 hull is used to check 
the accuracy of the numerical procedure. Line function of the 
hull can be written as [8]:

(15)

Wave-making resistance coefficient Cw is defined as:

(16)

where Rw is wave-making resistance of the hull in N, D is the 
hull displacement in kg, and V is the heading velocity of the 
ship in m/s. Curves of Cw versus Froude Number are presented 
in Fig. 4 to compare the result calculated in the program with 
that Wigley got from the calculations and experiments, with the 
ordinate representing the coefficient of wave-making resistance, 
and the abscissa the Froude number.

Fig. 4. Wave-making resistance comparison of present calculation with that 
of Wigley’s and the experimental result for Wigley N43 model

As it is illustrated in Fig. 4, though the agreement of the 
calculation at low Froude Number is not so perfect, the result 
show in this paper shows good agreement with that Wigley got 
at high Froude Number (Fr > 0.32).

Genetic algorithm

A genetic algorithm optimization model is applied and the 
numerical procedure is shown as follows:

The hull is divided into 21 stations in the direction of length. 
Since the section area of the No.0 station and No.20 station are 
zero, section areas of No.1 station to No.19 station are defined 
as designed variables:

 = {xi}, i – 1, 2, ..., 19                  (17)

Michell integration is used as the target function, that is, 
the adaptive function of genetic algorithm, and the volume 
of displacement of the ship as the constraint condition. 
5 percentages more of section area of parent hull is taken as 
the upper limit of the optimum region (XU) while 5 percentages 
less of that as the lower limit of the optimum region (XL).Then, 
the optimum model can be expressed as:

Target funktion Min Rw = Rw(X, U)
Subject to       g1: xi > XL (18)
             g1: xi < XU

             g1: (Δ – Δ0)/Δ < 5‰

Where Rw is wave-making resistance, U is the moving 
velocity of hull and Δ indicates the volume displacement of the 
hull. Since the volume of displacement constraint condition is 
nonlinear, we use the punishment coefficient method to simplify 
the computational process, and the punishment function can 
be written as

(19)

Where M and N are coefficient that need to be determined. 
Since it is difficult for genetic algorithm to deal with both 
M and N, we can make N constant and M a kind of descending 
series.

Design sample and analysis

Lines designing example of a hull is shown in the following, 
with the modified DTMB model ship 5415 used as the parent 
hull, of which the bulbous bow is removed. The main principles 
are listed in Table 1. 

Tab. 1. Main parameters of the parent ship

Parameter Value
Displacement [t] 12129

Length overall [m] 172.5

Beam [m] 23.09

Depth [m] 12.34

Volume of displacement [m3] 11785.6

Amid ship section coefficient Cm 0.817

Length on the waterline [m] 160.0

Waterline breadth [m] 21.46

Draught [m] 6.927

Prismatic coefficient Cp 0.607

Block coefficient Ch 0.496
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Since the hull lines of new ship generated is similar to the 
parent hull as it is shown in Fig. 5, resistance test of 1/30 scale 
models of the two ships are performed in the towing tank of 
Huazhong University of Science & Technology respectively for 
further comparison and analysis. The experimental temperature 
is about 18.0°C, and the models are kept afloat on an even 
keel during the test. Some useful parameters are shown in 
Table 2. 

Fig. 5. Lines of the parent ship and the designed one

Tab. 2. Some useful information for the experiment

Parameter Parent ship 
model

New ship 
model

Wetted surface area [m2] 3.893 3.905

Displacement [kg] 438.5 436.0

Average draught [m] 0.2309 0.2309

The resistance of the models tested in the experiment is 
converted to that of the full-scale ships, and the total resistance 
coefficient and residual resistance coefficient of the hulls are 
shown in Fig. 6. Experimental result indicates that the resistance 
of the new ship is similar to that of the parent hull. With the 
velocity of full-scale ship ranging from 22 to 36 knots, the total 
resistance of designed hull is 1% averagely more than that of the 
parent ship. Taking the average accuracy of model experiment 
into account, a conclusion can be drawn that resistance of the 
designed ship has no obvious change compared with that of 
the parent hull (Fig. 6). Obviously, the wetted surface area 
of the new ship declines slightly. These is probably because: 
firstly, the wetted surface area coefficient of the parent ship 
model is too small to bear too much change; secondly, on the 
condition that the displacement and the principal dimensions 
are almost the same, when the character of the body lines 
changed a little, it leads to no big difference in decreasing the 
wetted surface area.

Fig. 6. Comparison of resistance coefficient of the new hull 
with that of the parent one

Optimization of designed ship of full-scale is conducted, 
using Michell integral and the genetic algorithm mentioned 
above. Some different velocities such as 26kn (Fr = 0.338), 
28kn (Fr = 0.364), 30kn (Fr = 0.390), 32kn (Fr = 0.416) are 
taken into account. As have been stated, the wave-making 
resistance is taken as the target function. New section area 
curves of different resistance performance are obtained. The 
cross section area curves of different velocities are shown in 
Fig. 7, compared with that of parent ship.

Fig. 7. Transverse-section area curves of different velocities optimization 
compared with that of parent ship

Comparison wave-making resistance coefficient is shown 
in Fig. 8. The calculation result of 26kn shows good resistance 
performance at low velocity, while the wave-making resistance 
at high speed has no obvious improvement. Calculation result 
of 28kn and 30kn show just a little change at low speed in 
wave-making resistance, but the improvement at high speed 
is noticeable. Based on an overall consideration of different 
velocities, optimization result of 28kn is chosen for hull lines 
optimization.

Fig. 8. Coefficient of wave-making resistance of different velocities 
optimization compared with that of parent ship

Wave-making resistance coefficients of parent hull and 
the optimized one at 28 knots, compared with experimental 
result, are shown in Fig. 9. Lines of the designed hull and the 
optimized one are shown in Fig. 10. Since cross section areas 
of the hull vary in a small range, lines of hull dose not have 



21POLISH MARITIME RESEARCH, No 3/2012

much change. That is to say, with just a little change of hull 
lines, the hull can get some noticeable improvement in wave 
making resistance performance.

Fig. 9. Comparison of calculation result with experimental result

Fig. 10. Lines of the designed hull and the optimized one

In general, the wave-making resistance performance of 
the new hull is close to that of the parent hull. At low Froude 
number, the wave-making resistance coefficient of optimized 
hull is a little smaller. However, when the Froude number is 
higher, the coefficient of optimized hull is apparently smaller 
than that of parent one. That is to say the wave-making 
resistance performance of optimized hull has been obviously 
improved though the result coincides well with experimental 
result at low Froude number but not very well at high Froude 
number.

CONCLUSION

A hull lines design method, which involved wetted surface 
analysis and wave-making optimization, is applied with the 
intent of designing hulls of good resistance performance 
using a given set of constraints. A certain kind of quadratic 
curve is used to generate hull lines, of which the feasibility is 
proved in a brief theoretical analysis; approximate minimum 
wetted surface of the hull is calculated as well. Hull lines are 
proved smooth through mathematical procedure, in which 
both the first and second differentials of the line functions 
are derived. A program is compiled to calculate wave-making 
resistance of hulls using Michell integral and the Wigley hull 
model is taken as an example of validation. A DTMB model 
ship 5415 is used as an example of hull form optimization 
designing, applying a genetic algorithm. The particular genetic 
algorithm developed during this study uses the wave-making 
resistance as the objective function and allows automatic 
modification of cross section curve. Experiment result of new 
hull and the parent hull indicate that the hull optimization 
designing method is practical. With respect to the calculation 
result, the wave-making optimized hull is of good resistance 
performance.

Appendix A

Discussion of Eq. (1) for x < x0, x = x0 and x > x0 is shown as follows:
1) When x < x0, namely β(x) = 2S(x)/a(x)b(x) < 1:

- when c < 2/a(x)b(x) namely 1/b(x)2 – a(x)2c2/4 > 0:

(A1)

then:

(A2)

Since there exists a unique zero solution of equation z = sinβz, then 1/b(x)2 – a(x)2c2/4 = 0 i.e. c = 2/a(x)b(x), which 
contradicts the previous assumptions. Thus, Eq. (1) has no nontrivial solution.

- when c = 2/a(x)b(x) namely 1/b(x)2 – a(x)2c2/4 = 0:

S(x) = a(x)b(x)/2                                                                             (A3)

then β(x) = 1 and it contradicts the previous assumptions. Eq. (1) has no nontrivial solution.

- when c > 2/a(x)b(x), namely 1/b(x)2 – a(x)2c2/4 < 0:

(A4)
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then:

(A5)

By using Taylor expansion, an approximate solution of c can be got:

(A6)

Since the equation  has nontrivial solutions when β < 1, the conclusion comes out that Eq. (1) has solutions. 
lconic can be solute by considering Eq. (6) and (A6).

2) When x = x0, namely β(x) = 2S(x)/a(x)b(x) = 1:
- when c < 2/a(x)b(x), namely 1/b(x)2 – a(x)2c2/4 > 0

(A7)

then:

(A8)

Since there exists a unique zero solution of equation z = sin z, then 1/b(x)2 – a(x)2c2/4 = 0 i.e. c = 2/a(x)b(x), which 
contradicts the previous assumptions. Eq. (1) has no nontrivial solution.

- when c = 2/a(x)b(x), namely 1/b(x)2 – a(x)2c2/4 = 0. It is easy to verify that Eq. (1) has at least one nontrivial solution.
Substituting the equation above into Eq. (1):

(A9)

namely:

(A10)

The designed curve and circular arc are both turned to lines of the same expression z/b(x0) + y/a(x0) = 1, and the curve length 
.

- when c > 2/a(x)b(x), namely 1/b(x)2 – a(x)2c2/4 < 0:

(A11)

then:

(A12)

Since there exists a unique zero solution of equation , then 1/b(x)2 – a(x)2c2/4 = 0 i.e. c = 2/a(x)b(x), which 
contradicts the previous assumptions. Thus, Eq. (1) has no nontrivial solution.

3) When x0 < x, namely β(x) = 2S(x)/a(x)b(x) > 1
- when c < 2/a(x)b(x), namely 1/b(x)2 – a(x)2c2/4 > 0:

(A13)

then:

(A14)

By using Taylor expansion, an approximate solution of c can be got:
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(A15)

Since the equation z = sinz has nontrivial solutions when β > 1, Eq. (1) has at least a nontrivial solution. Curve length lconic can 
be calculated by solving Eq. (6) and (A15).

- when c = 2/a(x)b(x), namely 1/b(x)2 – a(x)2c2/4 = 0:

S(x) = a(x)b(x)/2                                                                            (A16)

That is β(x) = 1, which contradicts the previous assumption β(x) > 1. Thus, Eq. (1) has no nontrivial solution.

- when c > 2/a(x)b(x), namely 1/b(x)2 – a(x)2c2/4 < 0: 

(A17)

then:

(A18)

Since the equation  has no solutions when β > 1, Eq. (1) has no solutions yet.

Appendix B

Discussion of the continuity of waterlines function is shown as follows:
The first derivative of c with respect to z is calculated as follows: 

1) When x ∈ [0, x0), c = c(x) is defined by Eq. (8). Let:

(B1)

Eq. (8) can be written as:

Differentiate both sides of the equation with respect to x, and then we have:

(B2)

Let . A simple form of Eq. (B2) can be got by using L’Hôpital’s Rule:

(B3)

namely:

(B4)

then: 

(B5)

Solve Eq. (B1) and (B5), then:

(B6)

Simplify the equation, and we can get the left-hand limit of c’(x) at x0:

(B7)

2) When x ∈ (x0, L/2], c = c(x) is defined by Eq. (9). Let:

(B8)
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Eq. (9) can be written as:

sin (β(x)O(x)) = O(x)                                                                         (B9)

Differentiate both sides of the equation with respect to z, and then we have:

(B10)

Let . A simple form of Eq. (B9) can be got by using L’Hôpital’s Rule:

(B11)

namely:

(B12)

then:

(B13)

Solve Eq. (B8) and (B13):

Simplify the equation, and we can get the right-hand limit of c’(x) at x0:

(B14)

From Eq. (B7) and (B14), we have , namely the left-hand and right-hand limits are equal as x → x0, that is 

to say c’(x) is continuous in domain [x0, L/2].
When z = h, the waterline defined by Eq. (1) can be expressed as:

(B15)

Since a(x), b(x), c(x) and their first derivatives are all continuous, and it is not difficult to prove that the second derivatives of 
a(x), b(x), c(x) is continuous, the first and second derivative of y can be written as: 

(B16)

(B17)

Both Eq. (B16) and (B17) are smooth and continuous.

BIBLIOGRAPHY

1. Abramowski T., Żelazny K. and Szelangiewicz T.: Numerical 
Analysis of Influence of Ship Hull Form Modification On Ship 
Resistance and Propulsion Characteristics, Polish Maritime 
Research, 17(1): 10-13, 2010.

2. Chen P. and Huang C.: An Inverse Hull Design Problem in 
Optimizing the Desired Wake of Ship, Journal of Ship Research, 
46(2): 138-147, 2002.

3. Chen P., Huang C. and Fang M.: An Inverse Design Approach 
in Determining the Optimal Shape of Bulbous Bow with 
Experimental Verification, Journal of Ship Research, 50(1): 
1-14, 2006.



25POLISH MARITIME RESEARCH, No 3/2012

4. Doctors L. J., Day A. H. and Clelland D.: Resistance of a Ship 
Undergoing Oscillatory Motion, Journal of Ship Research, 
54(13): 120-12, 2010.

5. Gammon M. A.: Optimization of Fishing Vessels Using a Multi-
Objective Genetic Algorithm, Ocean Engineering, 38(10): 1054-
1064, 2011.

6. Ghassemi H. and Ghiasi M. A.: Combined Method for the 
Hydrodynamic Characteristics of Planing Crafts, Ocean 
Engineering, 35(3-4): 310-322, 2008.

7. Grigoropoulos G. J. and Chalkias D. S.: Hull-Form Optimization 
in Calm and Rough Water, Computer-Aided Design, 42(11): 
977-984, 2010.

8. Havelock T. H.: Wave Resistance Theory and its Application 
to Ship Problems, Society of Naval Architects and Marine 
Engineers, 1951. 

9. Kim H. and Yang C.: A New Surface Modification Approach for 
Cfd-Based Hull Form Optimization, Journal of Hydrodynamics, 
Ser. B, 22 (5, Supplement 1): 520-525, 2010.

10. Li X.: Multiobjective Optimization and Multiattribute Decision 
Making Study of Ship’s Principal Parameters in Conceptual 
Design, Journal of Ship Research, 53(2): 83-92, 2009.

11. Lu C., Lin Y. and Ji Z.: Free Trim Calculation Using Genetic 
Algorithm Based On Nurbs Shipform, International Shipbuilding 
Progress, 54(1): 45-62, 2007.

12. Lu C., Lin Y., Ji Z. and Chen M.: Ship Hull Representation 
with a Single Nurbs Surface, Proceedings of the International 
Offshore and Polar Engineering Conference, Seoul, Korea, 
2005.

13. Michell J. H.: The Wave Resistance of a Ship, Philosophy 
Magazine, 5(45): 106-123, 1898.

14. Pérez F. L., Clemente J. A., Suárez J. A. and González J. M.: 
Parametric Generation, Modeling, and Fairing of Simple Hull 
Lines with the Use of Nonuniform Rational B-Spline Surfaces, 
Journal of Ship Research, 52(1): 1-15, 2008.

15. Peri D. and Campana E. F.: Multidisciplinary Design 
Optimization of a Naval Surface Combatant, Journal of Ship 
Research, 47(1): 1-12, 2003.

16. Peri D., Rossetti M. and Campana E. F.: Design Optimization of 
Ship Hulls Via Cfd Techniques, Journal of Ship Research, 45(2): 
140-149, 2001.

17. Sarioz E.: An Optimization Approach for Fairing of Ship Hull 
Forms, Ocean Engineering, 33(16): 2105-2118, 2006.

18. TUCK E. O.: The Wave Resistance Formula of J.H. Michell 
(1898) and its Significance to Recent Research in Ship 
Hydrodynamics, The Journal of the Australian Mathematical 
Society. Series B. Applied Mathematics, 30(4): 365-377, 1989.

19. Tzabiras G. D.: A Method for Predicting the Influence of an 
Additive Bulb On Ship Resistance, 8th International conference 
on hydrodynamics, Athens, Greece, 2008.

20. Wilson W., Hendrix D. and Gorski J.: Hull Form Optimization 
for Early Stage Ship Design, Naval Engineers Journal, 122(2): 
53-65, 2010.

21. Yoo J.: Design of Ship’s Bow Form by Potential-Based Panel 
Method, Ocean Engineering, 34(8-9): 1089-1095, 2007.

22. Zhang B., Ma K. and Ji Z.: The Optimization of the Hull Form 
with the Minimum Wave Making Resistance Based On Rankine 
Source Method, Journal of Hydrodynamics, 21(2): 277-284, 
2009.

23. Zhang P., Zhu D. and Leng W.: Parametric Approach to Design 
of Hull Forms, Journal of Hydrodynamics, Ser. B, 20(6): 804-
810, 2008.

CONTACT WITH THE AUTHORS

Jianglong Suna), Ph.D., Assoc. Prof.
Xujian Lva), 1), Ph.D.

Weibin Liua), Ph.D., Assoc. Prof.
Hanwen Ningb), Ph.D.

Xianwen Chena), Master Graduate Student
a) Department of Naval Architecture & Ocean Engineering, 

Huazhong University of Science & Technology, 
Wuhan 430074, P.R. China

b) School of Statistics and Mathematics, 
Zhongnan University of Economics and Law, 

Wuhan 430074, P.R. China
1) Corresponding author. e-mail: lv.xujian@gmail.com


