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INTRODUCTION

A primary objective of the ship structural optimization is to 
find the optimum positions of structural elements, also referred 
to as topological optimization, shapes (shape optimization) 
and scantlings (sizing optimization) of structural elements for 
an objective function subject to constraints [27]. Formally, 
selection of structural material can also be treated as a part of 
the optimization process (material optimization). An essential 
task of the ship structure optimization is to reduce the structural 
weight, therefore most frequently the minimum weight is 
assumed as an objective function. Topological optimization 
means searching for optimal existence and space localization 
of structural elements while shape optimization is searching 
for optimal shape of ship hull body. Sizing optimization can 
also be expressed as a process of finding optimum scantlings 
of structural elements with fixed topology and shape. Selection 
of the structural material is usually not an explicit optimization 
task but is rather done according to experience and capability 
of a shipyard. Application of the optimization methods when 
selecting material usually consists in obtaining a few of 
independent solutions for given values of variables describing 
mechanical properties of material. Systematic optimization 
procedures for the selection of structural material are applied 
directly in rare cases. Optimization of structure of laminates 
is an example of such an optimization problem.

Shape optimization problems are solved within computational 
fluid dynamics. Advanced methods of CFD combined with 
robust random optimization algorithms allowed for optimizing 
a ship hull shape. Practical application of results is usually 
very difficult due to problems related to building ship hulls 
with optimal shapes (e.g. too slender hull shape to accomodate 
propulsion systems) as well as insufficient ship capacity. 
Despite continuous growth of computer capabilities and 
efficiency of optimization methods, progress in optimization of 
structural topology is very slow: only small-scale optimization 
problems were examined [2, 27]. First optimization procedures 
for solution of sizing optimization problems such as SUMT 
allowed for searching optimal scantlings of structural 
elements using analytical methods for stress evaluation 
[19, 22]. This approach offered quick optimization process 
but the disadvantage was that the algorithm had to be adjusted 
to each specific structure. Employing FEM it was possible 
to develop general computational tools [15, 38], yet the time 
necessary for stress evaluation became significantly longer. To 
avoid this difficulty two approaches were suggested; developing 
more efficient mathematical algorithms of search [9], 
or dividing the optimization problem into two levels [16, 18, 
26, 27, 28, 30, 31], so called Rational Design.

Thus the process of ship structural design and optimization 
can be considered in the four following areas: optimization of 
shape, material, topology and scantling. Due to complexity of 
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optimization problem related to ship structures, only partial 
optimization tasks are formulated in each of the four areas 
independently. No significant attempt to unify the optimization 
problems have been done so far.

Problems of ship structural design contain many design 
variables of values having large range. It means that the set 
of variants in a given search space is numerous. In such cases 
application of review methods is ineffective in terms of time
and impossible for acceptance in practice. Simultaneously, 
basic criteria and limitations are derived from the strength 
analysis and usually are nonlinear with respect to design 
variables. Nonlinear form of function dependencies makes 
difficulty in practice application of the differential calculus. 
It is thus necessary to find an alternative solution.

Preliminary developments proved the genetic algorithm 
(GA) could be an efficient tool for ship structural optimization 
[23, 24, 25, 29, 37]. The GA is proposed as a method for 
improving ship structures through more efficient exploration of 
the search space. The results of research on the GA application 
for optimization of high speed craft hull structure topology 
and sizing optimization are presented in the paper while the 
optimization of shape and material was not covered. The main 
ideas of GA are briefly described in Section 2. The computer 
code for structural optimization by GA is described in Section 
3. Structural, optimization and genetic models of a simplified 
fast craft hull structure are described in Sections 4, 5 and 6, 
respectively. The results of application of the computer code to 
the optimal design of the analysed structure is given in Section 
7. Some general conclusions are formulated in Section 8.

GENETIC ALGORITHM

The genetic algorithm belongs to the class of evolutionary 
algorithms that use techniques inspired by the Darwinian 
evolutionary theory such as inheritance, mutation, natural 
selection, and recombination (or crossover) [3, 10, 20, 21].

The genetic algorithm is typically implemented in the 
form of computer simulations where a population of abstract 
representations (called chromosomes) of candidate solutions 
(called individuals) to an optimization problem evolves 
gradually towards better solutions. Traditionally, solutions are 
represented in the binary system as strings of 0 s and 1 s but 
different encodings are also possible. The evolution starts from 
a population of completely random individuals and is continued 
in subsequent generations. In each generation, the fitness of 
the whole population is evaluated, multiple individuals are 
stochastically selected from the current population (based on 
their fitness), modified (mutated or recombined) to form a new 
population which becomes current in the next generation. 
Procedures of creation and evaluation of the successive 
generations of trial solutions are repeated until the condition of 
termination of computations is fulfilled, e.g. forming a predefined 
number of generations or lack of correction of the fitness function 
in a number of successive generations. The best variant found is 
then taken as the solution of the optimization problem.

A powerful stochastic search and optimization computational 
technique controlled by evolutionary principles can be 
effectively used to find approximate solutions of combinatorial 
optimization problems. They can be easily applied to 
optimization problems with discrete design variables which are 
typical in ship structural optimization. GA uses nondeterministic 
scheme and is not associated with differentiability or convexity. 
This is why using GA the global optimum can be reached in 
the search space more easily then by traditional optimization 
techniques. Another useful advantage is that it is very easy to 
use the discrete serial numbers of rolled or extruded elements 

(it means plates and bulbs) and number of structural elements in 
each region of ship hull as design variables because, by nature, 
the GA uses discrete design variables (design variables in the 
form of floating point numbers are also possible). However, 
there are some difficulties in optimization processes with 
the use of GA due to the trouble of converging to the actual 
optimum. Employing GA user should accept the fact that he will 
never know how close to the global optimum the search was 
terminated. He can only expect that the best final variants will 
be concentrated in the vicinity of local extrema and, possibly, 
global extremum. The final solution, believed to be optimal, 
is only an approximation of the global optimum. Level of this 
approximation cannot be estimated as the precise methods of 
examination of convergence of the GA were not developed so 
far. It is necessary to investigate robustness and convergence 
before application of GA to the structural optimization.

COMPUTER CODE FOR GENETIC 
OPTIMIZATION OF STRUCTURES

Applicability of GA for solution of the optimization 
problems unifying topology and scantling optimization of ship 
structure was verified using computer simulation. A computer 
code was developed adding the modules of the pre-processing, 
scantling analysis and post-processing to the genetic modules 
(selection, mutation, crossover) which form the Simply 
Genetic Algorithm (SGA). The flowchart of the code is shown 
in Fig. 1.

In the computer code the optimization problem is solved 
creating random populations of trial solutions. All principal 
operators of the basic evolutionary process [5, 10, 21] are 
used in the code: natural selection, mutation and crossover. 
Two additional operators: the elitist [6] and update operator 
[34] - are introduced for the selection as well. The genetic 
operators used in the computer code are described in details 
in Subsection 6.4.

In the computer code a population of individuals of a fixed 
size is randomly generated. Each individual is characterized 
by a string of bits and represents one possible solution to 
the ship structure topologies and sizing. Each new created 
variant of solution (an individual being a candidate to the 
progeny generation) is analysed by the pre-processor. In the 
pre-processor binary strings of chromosomes (genotypes) 
are decoded into the corresponding strings of decimal values 
representing design variables (phenotypes). Then for the 
actual values of the design variables defining spatial layout 
of the structural elements (topology) and their scantlings it is 
checked whether the actual configuration complies with the 
rules of the classification society. In the next step performance 
of solution is evaluated and it is checked whether the variant 
meets the constraints. At the end the value of the objective 
function is calculated for each variant – weight of the structure, 
and the value of the fitness function which is used for ordering 
the variants necessary to starting of selection. Variants are 
ordered with respect to this value. Knowing adaptation of each 
variant the random process is restarted to select variants of the 
successive progeny generation.

After selection the code determines randomly which genes 
of these whole population will mutate. This population is then 
mutated where small random changes are made to the mutants 
to maintain diversity. After that the mutate pool is created. Then 
decision is made how much information is swapped between 
the different population members. The mutated individuals are 
then paired up randomly and mated in the process commonly 
known as crossover. The idea is to derive better qualities from 
the parents to have even better offspring qualities. That is 
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done by creating, with fixed probability, „cutting points” and 
then the parts of the chromosomes located between “cuts” are 
interchanged. The mating process is continued until the full 
population is generated. The resulting population member 
is then referred to as an offspring. The newly generated 
individuals are then re-evaluated and given fitness score, and 
the process is repeated until it is stopped after a fixed number 
of generations. The best strings (individuals) found can be used 
as near-optimal solutions to the optimization problem.

All genetic parameters are specified by the user before the 
calculations. The population size, number of design variables 
and number of bits per variable, the total genome length, 
number of individuals in the population are limited by the 
available computer memory.

STRUCTURAL MODEL OF SHIP HULL

A model based on the Austal Auto Express 82 design 
developed by Austal [13,32] was applied for the optimization 
study. The general arrangement of the Austal Auto Express 82 
vessel is shown in Fig. 2. Main particulars of the ship are given in 
Fig. 3. The vessel and his corresponding cross - and longitudinal 
sections are shown in Fig. 4. For seagoing ships the application 
domain of initial stage design is clearly the cylindrical and 
prismatic zone of ship’s central part. For this reason the 
analysis a midship block-section (17.5 x 23.0 x 11.7 m) 
was taken. Bulkheads form boundaries of the block in the 
longitudinal direction. In the block 9 structural regions can be 
distinguished. The transverse bulkheads were disregarded to 
minimize the number of design variables.

Fig. 2. High speed vehicle-passenger catamaran, type Austal Auto Express 
82 – general arrangement [32]

Fig. 1. Flowchart of computer code for ship structure optimization by genetic algorithm

All regions are longitudinally stiffened with stiffeners; their 
spacing being different in each structural region. The transverse 
web frame spacing is common for all the regions. Both types 
of spacing, stiffener and transverse frame, are considered as 
design variables.

The structural material is aluminium alloy having properties 
given in Tab. 1. The 5083-H111 aluminium alloys are used 
for plates elements while 6082-T6 aluminium alloys are used 
for bulb extrusions. The plate thicknesses and the bulb and 
T-bulb extruded stiffener sections are assumed according 
to the commercial standards and given in Tabs 2-4. Bulb 
extrusions are used as longitudinal stiffeners while T-bulb 
extrusions are used as web frames profiles. Practically, the 
web frames are produced welding the elements cut out of 
metal sheets. Dimensions of the prefabricated T-bar elements 
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Fig. 3. High speed vehicle-passenger catamaran, type Auto Express 82 – main particulars

Fig. 4. Assumed model of craft – midship block-section, frame system and structural regions
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are described by four design variables (web height and 
thickness, and flange breadth and thickness). In the case of 
extruded bulb a single variable is sufficient to identify the 
profile, its dimensions and geometric properties. It delimits 
the computational problem and accelerates analysis. The 
strength criteria for calculation of plate thicknesses and 
section moduli of stiffeners and web frames are taken in 
accordance to the classification rules [36]. It was assumed 
that bottom, wet deck, outer side and superstructure 
I and II are subject to pressure of water dependant on the speed 
and the navigation region. The main deck was loaded by the 
weight of the trucks transmitted through the tires, mezzanine 
deck the – weight of the cars while the upper deck – the 
weight of equipment and passengers. Values of pressure were 
calculated according to the classification rules.

All genetic parameters are specified by the user before the 
calculations. This option is very important; the control of the 
parameter permits to perform search in the direction expected 
by the designer and in some cases it allows much faster 
finding solution. The population size, number of variables and 
number of bits per variable, the total genome length, number 
of individuals in the population are limited by the available 
computer memory.

Tab. 1. Properties of structural material – aluminium alloys

No. Property Value

1 Yield stress R0.2
125 (for 5083-H111 alloy) [N/mm2]

250 (for 6082-T6 alloy) [N/mm2]

2 Young modulus E 70.000 [N/mm2]

3 Poisson ratio ν 0.33

4 Density ρ 26.1 [kN/m3]

Tab. 2. Thickness of plates

No. Thickness t, [mm] No. Thickness t, [mm]

1 3.00 8 12.00

2 4.00 9 15.00

3 5.00 10 20.00

4 6.00 11 30.00

5 7.00 12 40.00

6 8.00 13 50.00

7 10.00 14 60.00

Tab. 3. Dimensions of bulb extrusions

No. Dimensions (h, b, s, s1)
1), 

[mm]
Cross-sectional area, 

[cm2]

1 80 x 19 x 5 x 7.5 5.05

2 100 x 20.5 x 5 x 7.5 6.16

3 120 x 25 x 8 x 12 11.64

4 140 x 27 x 8 x 12 13.64

5 150 x 25 x 6 x 9 10.71

6 160 x 29 x 7 x 10.5 13.51

7 200 x 38 x 10 x 15 24.20
1) h – cross-section height; b – flange width; s – web thickness; 
 s1 – flange thickness.

A minimum structural weight (volume of structure) was 
taken as a criterion in the study and was introduced in the 
definition of the objective function and constraints defined 
on the base of classification rules. Where structural weight is 
chosen as the objective function its value depends only on the 
geometrical properties of the structure (if structural material 
is fixed). The assumed optimization task is rather simple 
but the main objective of the study was building and testing 
the computer code and proving its application for structural 
topology and sizing optimization of a ship hull.

Tab. 4. Dimensions of T-bulb extrusions

No. Sizes (h, b, s, s1)
2), 

[mm]
Cross-sectional area, 

[cm2]
1 200 x 100 x 8 x 15 29.80

2 200 x 140 x 8 x 5 35.80

3 200 x 60 x 10 x 12 22.50

4 200 x 50 x 8 x 9.5 21.04

5 210 x 50 x 5 x 16 14.78

6 216 x 140 x 7.6 x 8 37.60

7 220 x 80 x 5 x 8 17.00

8 230 x 80 x 10 x 8 28.60

9 230 x 80 x 5.8 x 8 19.28

10 235 x 170 x 8 x 10 35.00

11 240 x 140 x 6 x 10 27.80

12 260 x 90 x 5 x 9.5 21.08

13 275 x 150 x 9 x 12 41.67

14 280 x 100 x 5 x 8 21.60

15 280 x 100 x 8 x 10 31.60

16 300 x 60 x 15 x 15 51.75

17 310 x 100 x 7 x 16 36.58

18 310 x 123 x 5 x 8 24.94

19 350 x 100 x 8 x 10 37.20

20 350 x 100 x 5 x 8 25.10

21 390 x 150 x 6 x 8 34.92

22 390 x 150 x 6 x 12 40.68

23 400 x 140 x 5 x 8 30.80

24 410 x 100 x 6 x 8 32.12

25 420 x 15 x 5 x 10 35.10

26 420 x 15 x 8 x 10 47.80

27 450 x 100 x 9 x 10 49.60

28 450 x 150 x 10 x 12 61.80
2) h – cross-section height, b - flange width, s - web thickness, 
 s1 - flange thickness.

FORMULATION OF OPTIMIZATION MODEL

In the most general formulation to solve a ship structural 
optimization problem means to find a combination of values of 
the vector of design variables x = col{x1, ..., xi, ..., xn} defining 
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the structure which optimizes the objective function f(x). The 
design variables should also meet complex set of constraints 
imposed on their values. The constraints formulate the set of 
admissible solutions. It is assumed that all functions of the 
optimization problem are real and a number of constraints 
is finite. Considering computational costs an additional 
requirement may also be formulated that they should be as 
small as possible.

As the minimum value of function f is simultaneously the 
maximum value of –f, therefore the general mathematical 
formulation of the both optimization problems reads:
� find vector of design variables:

x = col{x1, ..., xi, ..., xn}: 
xi,min ≤ xi ≤ xi,max, i = 1, ..., n

� minimize (maximize):

f(x)
� subject:

hk(x) = 0, k = 1, 2, ..., m’
gj(x) ≥ 0, j = m’+1, m’+2, ..., m

where:
x – a vector of n design variables
f(x) – objective function
hk(x) and gj(x) – constraints.

In the present formulation a set of 37 design variables is 
applied, cf. Tab. 5 and Fig. 5. Introduction of design variable 
representing the number of transversal frames in a considered 
section: x4, and numbers of longitudinal stiffeners in the 

regions: x5, x9, x13, x17, x21, x25, x29, x33, x37 enables simultaneous 
optimization of both topology and scantlings within the 
presented unified topology - scantling optimization model.

Numbers of stiffeners and transverse web frames, 
varying throughout the processs of optimization, determine 
corresponding spacings of them. Scantlings and weights of 
structural elements: plating, stiffeners and frames are directly 
dependant on the stiffeners and frames spacings – topological 
properties of the structure.

Optimizing the structural topology of the ship, a difficult 
dilemma is to be solved concerning a relation between the 
number of structural elements in longitudinal and transverse 
directions and their dimensions, influencing the structural 
weight. Constraints should also be considered related to the 
manufacturing process and functional requirements of the ship, 
e.g. transportation corridors, supporting container seats on the 
containerships (typically by longitudinal girders and floors in 
the double bottom) or positioning supports on the girders in 
the distance enabling entry of cars on ro-ro vessels.

Objective function f(x) for optimization of the hull structure 
weight is written in the following form:

f(x) =    ;   r = 9                  (2)

where:
r – number of structural regions
SWj – structural weight of the j-th structural region
wj – relative weight coefficient (relative importance of 

structural weight) of regions varying in the range 
<0,1>.

The behaviour constraints, ensuring that the designed 
structure is on the safe side, were formulated for each region 

 (1)

Fig. 5. Assumed model of craft – specification of design variables
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Tab. 5. Simplified specification of bit representation of design variables

No.
i

Symbol
xi

Item
Substring 

length 
(no of bits)

Value

Lower limit
xi,min

Upper limit
xi,max

1 x1 Serial No. of mezzanine deck plate 4 1 10

2 x2 Serial No. of mezzanine deck bulb 3 1 7

3 x3 Serial No. of mezzanine deck t-bulb 4 42 52

4 x4 Number of web frames 3 10 16

5 x5 Number of mezzanine deck stiffeners 4 25 40

6 x6 Serial No. of superstructure i plate 4 1 10

7 x7 Serial No. of superstructure i bulb 3 1 7

8 x8 Serial No. of superstructure i t-bulb 4 42 52

9 x9 Number of superstructure i stiffeners 3 4 11

10 x10 Serial No. of inner side plate 4 1 10

11 x11 Serial No. of inner side bulb 3 1 7

12 x12 Serial No. of inner side t-bulb 4 42 52

13 x13 Number of inner side stiffeners 3 18 25

14 x14 Serial No. of bottom plate 4 1 12

15 x15 Serial No. of bottom bulb 3 1 7

16 x16 Serial No. of bottom t-bulb 4 42 52

17 x17 Number of bottom stiffeners 4 15 25

18 x18 Serial No. of outer side plate 4 1 12

19 x19 Serial No. of outer side bulb 3 1 7

20 x20 Serial No. of outer side t-bulb 4 42 52

21 x21 Number of outer side stiffeners 4 18 33

22 x22 Serial No. of wet deck plate 4 1 12

23 x23 Serial No. of wet deck bulb 3 1 7

24 x24 Serial No. of wet deck t-bulb 4 42 52

25 x25 Number of wet deck stiffeners 4 25 40

26 x26 Serial No. of main deck plate 4 2 12

27 x27 Serial No. of main deck bulb 3 1 7

28 x28 Serial No. of main deck t-bulb 4 42 52

29 x29 Number of main deck stiffeners 4 25 40

30 x30 Serial No. of superstructure ii plate 4 1 10

31 x31 Serial No. of superstructure ii bulb 3 1 7

32 x32 Serial No. of superstructure ii t-bulb 4 42 52

33 x33 Number of superstructure ii stiffeners 3 4 11

34 x34 Serial No. of upper deck plate 4 1 10

35 x35 Serial No. of upper deck bulb 3 1 7

36 x36 Serial No. of upper deck t-bulb 4 42 52

37 x37 Number of upper deck stiffeners 4 25 40

Multivariable string length (chromosome length) 135
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according to the classification rules [36] constitute a part of the 
set of inequality constraints gj(x):
� required plate thickness tj,rule based on the permissible 

bending stress:

tj – tj,rule ≥ 0                                (3)

where:
tj – actual value of plate thickness in j-th region

� required section moduli of stiffeners Zs,j,rule:

Zs,j – Zs,j,rule ≥ 0                            (4)

where:
Zs,j – actual value of the section modulus of stiffeners in 

j-th region

� required section moduli of web frames Zf,j,rule:

Zf,j – Zf,rule ≥ 0                            (5)

where:
Zf,j – actual value of the section modulus of web frames 

in j-th region

� required shear area of stiffeners At,s,j,rule:

At,s,j – At,s,j,rule ≥ 0                        (6)

where:
At,s,j – actual value of shear area of stiffeners in j-th 

region

� required shear area of web frames At,f,j,rule:

At,f,j – At,f,j,rule ≥ 0                        (7)

where:
At,f,j – actual value of the shear area of web frames in j-th 

region.

Side constraints hk(x), mathematically defined as equalibrum 
constraints, for design variables are given in Tab. 5. They 
correspond to the limitations of the range of the profile set. 
Some of them are pointed according to the author’ experience 
in improving the calculation convergence.

The additional geometrical constraints were introduced due 
to “good practice” rules:
� assumed relation between the plate thickness and web frame 

thickness:

tj - tf,w,j ≥ 0                               (8)

where:
tj – actual value of the plate thickness in j-th region
tf,w,j – actual value of web frame thickness in j-th region

� assumed relation between the plate thickness and stiffener 
web thickness:

tj – ts,w,j ≥ 0                             (9)

where:
tj – actual value of the plate thickness in j-th region
ts,w,j – actual value of stiffener web thickness in j-th 

region

� assumed minimal distance between the edges of frame 
flanges:

l(x4+1) - bf,j ≥ 0.3 m                   (10)

where:
bf,j – actual value of frame flange breadth in j-th region.

These relationships supplement the set of inequality 
constraints gj(x).

Finally, taking into consideration all specified assumptions, 
the optimization model can be written as follows:
� find vector of design variables x = col{x1, ..., xi, ..., xn}, 

xi, i = 1, ..., 37 as shown in Tab. 5
� minimise objective function f(x) given by Eq. (2)
� subject to behavior constraints given by Eqs. (3) ÷ (7), side 

constraints given in Tab. 5 and geometrical constraints given 
by Eqs. (8) ÷ (10) build a set of equality hj(x) and inequality 
gj(x) constraints.

DESCRIPTION OF THE GENETIC MODEL

General

The topology and sizing optimization problem described 
in Sections 4 and 5 contains a large number of discrete design 
variables and also a large number of constraints. In such a case 
GA seems to be especially useful. Solution of the optimization 
problem by GA calls for formulation of an appropriate 
optimization model. The model described in Sections 4 and 
5 was reformulated into an optimization model according to 
requirements of the GA and that model was further used to 
develop suitable procedures and define search parameters to 
be used in the computer code.

The genetic type model should cover:
� definition of chromosome structure
� definition of fitness function
� definition of genetic operators suitable for the defined 

chromosome structures and optimization task
� list of the searching control parameters.

Chromosome structure

The space of possible solutions is a space of structural 
variants of the assumed model. The hull structural model 
is identified by the vector x of 37 design variables, xi. Each 
variable is represented by a string of bits used as chromosome 
substring in GA. The simple binary code was applied. In Tab. 5
a simplified specification for bit representation of all design 
variables is shown. Such coding implies that each variant of 
solution is represented by a bit string named chromosome. 
Length of chromosome which represents of structural variant is 
equal to the sum of all substrings. Number of possible solutions 
equals the product of values of all variables. In the present work 
the chromosome length is equal to 135 bits making the number 
of possible solutions approximately equal to 1038.

Fitness function

A fitness function is used to determine how the ship structure 
topology and sizing is suitable for a given condition in the 
optimum design with a GA. The design problem defined in 
previous parts of this paper is to find the minimum weight 
of a hull structure without violating the constraints. In order 
to transform the constrained problem into unconstrained one 
and due to the fact that GA does not depend on continuity and 
existence of the derivatives, so called “penalty method” have 
been used. The contribution of the penalty terms is proportional 
to violation of the constraint. In the method the augmented 
objective function of unconstrained minimisation problem is 
expressed as:

Φ(x) = f(x) –                    (11)

where:
Φ(x)  – augmented objective function of unconstrained 

minimisation
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f(x)  – objective function given by Eq. (2)
Pk – penalty term to violation of the k-th constraint
wk – weight coefficients for penalty terms
nc – number of constraints. 

Weight coefficients wk are adjusted by trial.

Additionally a simple transformation of minimisation 
problem (in which the objective function is formulated for 
the minimisation) into the maximization is necessary for the 
GA procedures (searching of the best individuals). It can be 
done multiplying the objective function by (-1). In that way, 
the minimization of the augmented objective function was 
transformed into a maximisation search using:

Fj = Φmax - Φj(x)                        (12)

where:
Fj – fitness function for j-th solution
Φj(x)  – augmented objective function for j-th solution
Φmax – maximum value of the augmented function from all 

solutions in the simulation. 

The value of parameter Φmax has to be arbitrary chosen by 
a user of the software to avoid negative fitness values. Its value 
should be greater than the expected largest value of Φj(x) in the 
simulation. In the presented approach the value Φmax = 100,000 
was assumed.

Genetic operators

The basic genetic algorithm (Simple Genetic Algorithm 
- SGA) produces variants of the new population using the 
three main operators that constitute the GA search mechanism: 
selection, mutation and crossover. The algorithm in present 
work was extended by introduction of elitism and updating.

Many authors described the selection operators which 
are responsible on chromosome selection due to their fitness 
function value [1, 7, 11, 21]. After the analysis of the selection 
operators a roulette concept was applied for proportional 
selection. The roulette wheel selection is a process in which 
individual chromosomes (strings) are chosen according to 
their fitness function values; it means that strings with higher 
fitness value have higher probability of reproducing new strings 
in the next generation. In this selection strategy the greater 
fitness function value makes the individuals more important 
in a process of population growth and causes transmittion of 
their genes to the next generations.

The mutation operator which introduces a random changes 
of the chromosome was also described [1,21]. Mutation is 
a random modification of the chromosome. It gives new 
information to the population and adds diversity to the mate 
pool (pool of parents selected for reproduction). Without the 
mutation, it is hard to reach to solution point that is located far 
from the current direction of search, while due to introduction 
of the random mutation operator the probability of reaching 
any point in the search space never equals zero. This operator 
also prevents against to the premature convergence of GA to 
one of the local optima solutions, thus supporting exploration 
of the global search space.

The crossover operator combines the features of  two parent 
chromosomes to create new solutions. The crossover allows 
to explore a local area in the solution space. Analysis of the 
features of the described operators [1, 11, 21] led to elaboration 
of own, n-point, random crossover operator. The crossover 
parameters in this case are: the lowest n_x_site_min and the 
greatest n_x_site_max number of the crossover points and the 
crossover probability pc. The operator works automatically and 

independently for each pair being intersected (with probability 
pc), and it sets the number of crossover points n_x_site. The 
number of points is a random variable inside the set range 
[n_x_site_min, n_x_site_max]. The test calculations proved 
high effectiveness and quicker convergence of the algorithm 
in comparison to algorithm realizing single-point crossover. 
Concurrently, it was found that the number of crossover points 
n_x_site_max greater than 7 did not improve convergence of 
the algorithm. Therefore, the lowest and greatest values of 
the crossover points were set as following: n_x_site_min = 1, 
n_x_site_max = 7 (Tab. 6).

The effectiveness of the algorithm was improved with 
application of an additional updating operator as well as 
introduction of elitist strategy.

Tab. 6. Genetic model and values of control parameters

No. Symbol Description Value

1 ng Number of generations 5,000

2 ni Size of population 2,000

3 np Number of pretenders 3

4 pm Mutation probability 0.066

5 pc Crossover probability 0.80

6 c_strategy
Denotation of crossover strategy 

(0 for fixed, 1 for random 
number of crossover points)

1

7 n_x_site_min The lowest number of crossover 
points 1

8 n_x_site_max The greatest number of 
crossover points 7

9 pu Update probability 0.33

10 elitism

Logical variable to switch 
on (elitism = yes) and off 

(elitism = no) the pretender 
selection strategy

yes

Random character of selection, mutation and crossing 
operators can have an effect that these are not the best fitting 
variants of the parental population which will be selected for 
crossing. Even in the case they will be selected, the result 
will be that progeny may have less adaptation level. Thus 
the efficient genome can be lost. Elitist strategy mitigates the 
potential effects of loss of genetic material copying certain 
number of best adapted parental individuals to progeny 
generation. In the most cases the elitist strategy increases the 
rate of dominating population by well-adapted individuals, 
accelerating the convergence of the algorithm. The algorithm 
selects fixed number of parental individuals np having the 
greatest values of the fitness function and the same number of 
descendant individuals having the least values of the fitness. 
Selected descendants are substituted by selected parents. In 
this way the operator increases exploitation the of searching 
space. The number of pretenders np is given in Tab. 6. Update 
operator with fixed probability of updating pu introduces an 
individual, randomly selected from the parental population, to 
the progeny population, replacing a descendant less adapted 
individual. The value of probability of updating pu is also given 
in Tab. 6. This operator enhances exploration of searching 
space at the cost of decreasing the search convergence. It also 
prevents the algorithm from converging to a local minimum. 
Both operators acts in opposite directions, and they should 
be well balanced: exploitation of attractive areas found in the 
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searching spaces as well as exploration of searching space to 
find another attractive areas in the searching space depends on 
the user’s experience.

Control parameters

Single program run with the defined genetic model is 
characterized by values of ten control parameters (Tab. 6).

For selection of more control parameters it is not possible 
to formulate quantitative premises because of the lack of 
an appropriate mathematical model for analysis of GA 
convergency in relation to control parameters. The control 
parameters were set due to test calculations results to achieve 
a required algorithm convergence; their values are presented 
in Tab. 6.

Conclusion

Finally, taking into consideration all specified assumptions, 
the genetic model can be written as follows:
� chromosome structure specified in Tab. 5
� fitness function given by Eq. 12
� genetic operators described in subsection 6.4
� control parameters specified and described in subsection 

6.5 and specified in Tab. 6.

OPTIMIZATION CALCULATIONS

To verify the correctness of the optimization procedure 
several test cases have been carried out using the model 
described in Sections 4-6. Each experiment is characterised 
by the 10 parameters, given in Tab. 6, controling the search 
process. The set of experiment parameters are as follows: 
(ng, ni, np, pm, pc, c_strategy, n_x_site_min, n_x_site_max, pu, 
elitism) = (5,000, 2,000, 3, 0.066, 0.8, 1, 1, 7, 0.033, true). 
A total number of 106 individuals were tested in the whole 
simulation. Results of typical search trial are presented in 
Tab. 7-8 and Fig. 6.

The lowest value of the objective function, f(x) = 4.817,35 kN, 
was found in the 868th generation. The corresponding values 
of design variables are given in Tab. 7.

All values of the hull structural weight for feasible 
individuals searched in the simulation are presented in Fig. 7. 
The solid line represents the front of optimal solutions. It is 
composed of minimal (optimal) values of the structural weight 
received in the following simulation. All variants situated above 
the front of optimal solutions line are feasible but structural 
weight of these wariants is greater than those situated on the 
front line. It can be seen how difficult it is to find the global 
optimum in the space search. Most of admissible variants 
created and evaluated during the simulation are remote from 
the global optimum and were used for the exploration of 
search space. A significant part of the computational effort is 
thus used by the algorithm for the exploration of search space 
and only a small part for exploitation of local optima. Such 
a ”computational extravagance” is typical for all optimization 
algorithms employing random processes.

Fig. 7. Evolution of structural weight values over 5.000 generations; 
solid line for absolutely minimal structural weight found during 

simulation (only feasible solutions are shown)

The graphs of the maximum, average, minimum and variance 
values of fitness across 5.000 generations for simulation are 
presented in Fig. 8. The saturation was nearly achieved in this 
simulation. The maximum normalised fitness value is nearly 
0,645. The standard deviation value is approximately constant 
and equal to 0,075 for all generations what means that heredity 
of generations is approximately constant over simulation. 
Variation of macroscopic quantities forming subsequential 
populations created throughout the simulation indicates 
evolutionally correct computations and that, for assumed values 
of the control parameters, it was not necessary to continue the 
simulation beyond assumed value of 5.000 generations.

Fig. 6. Optimal dimensions and scantlings of vessel structure
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Fig. 8. Evolution of maximum, average, minimum and standard deviation 
values of the fitness over 5.000 generations; fitness function values are 
dimensionless and normalised to produce extreme value equal to 1.0

Quick stabilization of the mean value of the adaptation 
function and standard deviation indicates that considering the 
value of the adaptation function populations are homogenous 
in almost all simulation period. Quick stabilization of the mean 
value of the adaptation function as well as the standard deviation 
indicate that almost all populations are homogenous.

Evolution of the number of feasible individuals throughout 
the simulation is shown in Fig. 9. The number of feasible 
individuals found in the simulation increases with respect 
to time. It can be seen that the number of feasible variants 
is linearly dependant on the number of populations. In the 
whole simulation 1.462 feasible individuals were found what 
approximately equals 0.015% of all checked individuals.

Fig. 9. Evolution of number of feasible individuals over 5.000 generations; 
1.462 feasible individuals have been checked

Evolution of fitness function values and the minimum values 
of structural weight are shown in Fig. 10. A correspondence of 
the diagrams can be seen. The increase of the fitness function 
values in successive generations is accompanied by the 
decrease of structural weight values. In the significant period 
of the simulation the algorithm used to find variants with better 
value of the fitness function, even so these were not variants 
having better values of optimization criterion – structural 
weight. Beginning with certain generation, the results become 
better not due to the value of the objective function but due to 
better fitting to constraints. Variation of the fitness function as 
well as the structural weight proves the correct course of the 
simulation considering the optimization of the structure with 
respect to its weight.

Fig. 10. Evolution of maximal fitness value and absolutely minimal 
structural weight over 5.000 generations; absolutely minimal structural 

weight for simulation only for feasible solutions

Tab. 7. Optimal values of design variables

No.
Sy

m
bo

l
Description

O
pt

im
al

 
va

lu
e

1 x1 Serial No. of mezzanine deck plate 5

2 x2 Serial No. of mezzanine deck bulb 1

3 x3 Serial No. of mezzanine deck t-bulb 49

4 x4 Number of web frames 12

5 x5 Number of mezzanine deck stiffeners 30

6 x6 Serial No. of superstructure i plate 2

7 x7 Serial No. of superstructure i bulb 4

8 x8 Serial No. of superstructure i t-bulb 47

9 x9 Number of superstructure i stiffeners 4

10 x10 Serial No. of inner side plate 8

11 x11 Serial No. of inner side bulb 4

12 x12 Serial No. of inner side t-bulb 44

13 x13 Number of inner side stiffeners 23

14 x14 Serial No. of bottom plate 8

15 x15 Serial No. of bottom bulb 6

16 x16 Serial No. of bottom t-bulb 50

17 x17 Number of bottom stiffeners 18

18 x18 Serial No. of outer side plate 5

19 x19 Serial No. of outer side bulb 1

20 x20 Serial No. of outer side t-bulb 50

21 x21 Number of outer side stiffeners 31

22 x22 Serial No. of wet deck plate 5

23 x23 Serial No. of wet deck bulb 1

24 x24 Serial No. of wet deck t-bulb 50

25 x25 Number of wet deck stiffeners 29

26 x26 Serial No. of main deck plate 10

27 x27 Serial No. of main deck bulb 3

28 x28 Serial No. of main deck t-bulb 48

29 x29 Number of main deck stiffeners 33

30 x30 Serial No. of superstructure ii plate 2

31 x31 Serial No. of superstructure ii bulb 4

32 x32 Serial No. of superstructure ii t-bulb 47

33 x33 Number of superstructure ii stiffeners 4

34 x34 Serial No. of upper deck plate 2

35 x35 Serial No. of upper deck bulb 3

36 x36 Serial No. of upper deck t-bulb 43

37 x37 Number of upper deck stiffeners 31
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Both figures, Fig. 9 and 10, indicate quantitatively that the 
computer simulation realizing evolutional searching for the 
solution of the topology-sizing in relation to weight of the ship 
structure optimization was successful and the final result can be 
taken as the solution of the formulated optimization problem. 
As it is known, the conclusion cannot be confirmed by precise 
mathematical methods.

Number of all possible variants in the genetic model, number 
of checked individuals over 5.000 generations and number of 
feasible individuals checked over simulation are shown in 
Fig. 11. Presented values show how much computational effort 
is used to find a small number of the feasible variants among 
which we expect the optimum variant be located. It seems that 
it is a cost we should accept if we want to keep the high ability 
of the algorithm to explore of the solution space. Retaining 
the values of another control parameters, the number of the 
feasible variants can be increased adjusting variation ranges 
of the design variables. The ranges can be either narrowed or 
shifted towards larger values of the design variables so that it 
is easier to obtain feasible variants. In each specific case the 
selection of the strategy is dependant on the user:
• whether to allow the wider searching solution space 

expecting solutions closer to optimum can be found at the 
expense of longer computational time,

• or to decrease the computational time accepting that the 
solutions will be more remote from the optimum.

Fig. 11. 1. number of all possible individuals (1039 individuals), 
2. number of checked variants (107 variants), 3. number of feasible 

variants checked over simulation (1462 variants); area is proportional 
to logarithm of number of variants

Methodology of scientific investigation requires that the 
quantitative results be verified. In this case the verification 
can be performed either (i) comparing to appropriate values 
of a real structure or (ii) comparing to the recognized results 
of comparable computations performed by other authors. 
Concerning (i) the author does not have corresponding 
data since the shipyards usually do not publish the data on 
structural weight. Concerning (ii) it should be remarked that 
similar optimization problems referring to ship structures are 
rarely undertaken by the other authors therefore the examples 
are unique or unpublished. Specifically, the author does not 
have a reference data on the structural model taken for the 
investigation. In this context the presented investigation does 
not answer the question whether the obtained results indicate 
a possibility to design the structure lighter than actual but 
the existence of a method which is applicable for solution of 
the unified topology - size optimization for a sea-going ship 
structure in more general sense.

The investigation carried out within the present paper 
confirmed the three unquestionable advantages of GA which 
make them attractive and useful for optimization of ship 
structures: (i) resistance to existence of many local extremes 
in the search space, (ii) lack of necessity of differentiation of 
the objective and limit functions and (iii) easiness of modeling 
and solution of the problems involving discrete variables. Of 
course they also have disadvantages, the most important being: 

(i) computational extravagance (large computational cost used 
for exploration of the search space) and (ii) lack of formal 
convergence criteria. Additional advantages which can decide 
perspectively on the more common use of the algorithms are: 
(i) existence of developed and published algorithms of multi-
criteria optimization as well as (ii) effective computations on 
networks of computers or muti-processor computers.

Significant computational costs required for ship structural 
optimization employing GA cause, at the present speed of 
commercial computer systems, strong doubts on possibility 
of application of direct methods of structural analysis for 
estimation of behaviour constraints. It seems that direct 
application e.g. regularly used in practice the finite element 
method for the analysis of millions or even billions variants 
checked in the exploration of decision space seems impossible. 
Especially in the preliminary designing where many 
optimization investigations are to be performed in short time. In 
such a situation methods can be searched to limit the number of 
such calculations to e.g. preselected variants. A hybrid system 
can also be proposed where e.g. GA will allow to create, using 
fast rule equations or simplified methods of analysis, a set 
of variants localized in the vicinity of extremum and then 
searching the optimum solution using the selected analytical 
method using the direct methods of structural analysis.

CONCLUSIONS

� The application of the genetic algorithm concept to solve 
the practical design problem of the optimization of hull 
structures of high speed craft was presented. The problem 
of weight minimisation for a three dimensional full 
midship block-section of the high speed catamaran hull 
was described.

� In the study the design problem was limited to the 
minimisation of the hull structural weight but it can be 
easily extended to include other criteria such as production 
cost what will be a subject of the further studies.

� It was proven in the study that the GA allows to include in 
the optimization model a large number of design variables 
of the real ship structure. Introducing constraints related to 
strength, fabrication and standardisation is not difficult and 
may cover a more representative set of criteria.

� Simultaneous optimization of topology and scantlings is 
possible using the present approach. Enhancement of the 
sizing optimization (the standard task of the structural 
optimization) to allow for the topology optimization requires 
disproportional computational effort. It is an effect of both 
increase of the search space by introducing design variables 
referring to the structural topology as well as increase of 
number of generations and number of individuals to ensure 
satisfactory convergence of the optimization process.

� Additionally the GA realisation described in the paper 
is also under continuous development directed towards 
implementation of other genetic operators, genetic 
encoding, multi-objective optimization etc. as well as 
including some other constraints.

� Practical application of the GA to ship structural optimization 
calls for significant limitation of an optimization problem 
in the way of spatial delimitation of the structural region 
subject to optimization and/or limitation of variation of 
design variables.
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� As the final conclusion it can be said that the study 
confirmed that proposed realisation of the GA presented 
a potentially powerful tool for optimising of the topology 
and sizing of ship hull structures.

� The present paper is a successful attempt of unification 
of problems of topology and sizing optimization of ship 
structure and their solution using the GA. It was proven that 
the GA can be considered as a good method for solution 
of more general unified shape-material-topology-sizing 
optimization problems.
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