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ABSTRACT

The load capacity of homogeneous, isotropic viscoelastic materials subjected to multiaxial 
stresses is considered. For this purpose uniaxial equivalent stresses in selected load cases 
are determined and relevant criteria applied. It is shown that in the case of constant 
load the yield criterion does not differ from that for perfectly elastic materials. Similar 
conclusion has been drawn for the fatigue and yield criteria at in-phase and out-of-phase 
stresses. On the contrary, the criteria derived for viscoelastic materials subjected to 

periodic loads do not coincide with those for perfectly elastic materials.
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INTRODUCTION

Even in the region below the limit of proportionality, metals 
are not perfectly elastic, and their deformation is accompanied 
by internal friction. As a result, their strain response to static 
loads is time-dependent, and when the load varies in time, 
the strain lags behind the stress. In particular, after the rapid 
shortening of a bar that occurs when its axial tensile load is 
removed, the bar continues to shorten gradually until the initial 
length has been reached. This gradual return to the initial 
length following unloading is called anelastic behaviour or 
viscoelasticity [1, 2]. Anelastic strain differs from plastic strain 
because it is recoverable rather than permanent, and it differs 
from elastic strain because it is recoverable at a rate which is 
slow in comparison to the rate of recovery of elastic strain. The 
elastic behaviour of metals and structural steels is much more 
significant than their anelastic properties, which enables the 
strength criteria to be formulated with the aid of the Hooke′s law 
for perfectly elastic materials. However, as shown in the present 
paper, dissipative properties of engineering materials may be 
also taken into account in design considerations, especially in 
the case of periodic load when an equivalent reduced stress is 
to be determined in calculations of a structural limit state.

During the last two decades, the emphasis in structural 
design has been moving from the allowable stress design to 
the limit state design [2]. Generally, four types of limit states 
may be specified:

 serviceability limit state,

 ultimate or yield limit state,

 fatigue limit state,

 accidental limit state.

This paper concerns the yield and fatigue limit states of 
viscoelastic materials under combined static and vibratory 
loads.

YIELD CRITERION OF VISCOELASTIC 
MATERIALS UNDER MULTIAXIAL 

STATIC LOADS

The stress and strain at which a material either begins 
to yield or fractures due to a uniaxial load can be measured 
relatively easily. But for an arbitrarily shaped body under 
arbitrary loads, the prediction of yield or fracture is very 
difficult. Some criterion is needed to make predictions without 
testing every material under every possible loading. An ideal 
criterion would be one that is based on a simple uniaxial test. 
Then the normal stress, normal strain, shear stress, the strain 
energy, or the distortion energy, among other possibilities, 
could be taken into account. Each of these reaches its failure 
value at the same load in a uniaxial test, but this is no longer 
true if the state of stress is either two- or three-dimensional. 
Therefore various theories regarding the initiation of yielding 
have been developed. The earliest, and the simplest, relation 
describing the conditions for initiating plastic flow under static 
or quasi-static load is the shear stress law. This law states 
that the metal will yield when the largest shear stress reaches 
a critical value, irrespective of the stress state. A somewhat 
more accurate law is the “energy-of-distortion” criterion, also 
called the Huber-Mises-Hencky (HMH) strength theory [2-4]. 
It embodies the physical hypothesis that yielding occurs when 
a certain critical value of distortion energy is reached, which 
corresponds to that where the equivalent reduced stress, σeo, 
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reaches the yield strength, Re, determined from the uniaxial 
tension test. Experiments show that this is an excellent criterion 
for the yielding of ductile materials [2]. This criterion is also 
useful for ductile materials under multiaxial proportional 
loading and high-cycle fatigue [5]. Therefore it will be also 
used in the present paper.

To begin with, let us consider a perfectly elastic solid under 
general state of static load resulting in normal and shear stress and 
strain components σjo, εjo, τko, γko, (j = x, y, z; k = xy, yz, zx).

The elastic strain energy per unit volume is [4]:

(1)

where:

(2)

In Eqs (2), expressing the Hooke’s law for multiaxial stress 
in elastic solids, E is the Young modulus, υ  is the Poisson’s 
ratio, and:

(3)

is the shear modulus. Substitution of Eqs (2) and (3) into Eq. 
(1) results in:

(4)

which can be rewritten as [4]:

ψo = ψdo + ψvo                             (5)

where:

(6)

is the strain energy of distortion, and:

 (7)

is the strain energy of volume change. According to the 
HMH theory, at yield, the distortion energy at a point in a three-
dimensional state of stress is equal to the distortion energy at 
yield in the uniaxial case. Thus:

ψdeo = ψdo                                (8)

where:
 

(9)

is the strain energy of distortion per unit volume under reduced 
stress σeo in tension. Hence [2, 4, 5]:

(10)

and the criterion in question reads:

σeo < Re                                (11)

Now suppose that the considered load is applied to 
a viscoelastic solid at the time t = 0 and the stress components 
σjo and τko are maintained constant. Then the constitutive 
equations for strains are [6]:

 (12)

and the elastic strain energy becomes time-dependent:

 (13)

In Eqs (12), η is the coefficient of viscous damping of 
normal strain in the Kelvin-Voigt’s model of the material 
[2, 6]. Substitution of Eqs (2) and (12) into Eq. (13) gives:

 (14)

with:
 (15)

Hence it is clear that Eq. (10) and the criterion (11) are 
applicable also to viscoelastic materials under constant loads.

FAILURE CRITERIA OF VISCOELASTIC 
MATERIALS UNDER MULTIAXIAL 

HARMONIC LOADS

Under dynamic loading conditions, the strength of 
a structural element is degraded due to the cyclic application 
of load or strain which may lead to fatigue damage. It is why 
in this paper not only the yield criterion but also fatigue criteria 
are considered.

The fatigue load that a structure can withstand is often 
significantly less than the load which it would be capable of if the 
load were applied only once. For the case of combined dynamic 
loading, where torsion, bending and/or tension loads vary in time, 
no one strength theory is universally accepted, and all existing 
multiaxial fatigue criteria can demonstrate large scatter [7]. 
Only multiaxial in-phase stresses with constant principal 
directions can be treated fairly well using the conventional 
strength theories [8]. In [9] an attempt was made to extend the 
application range of the HMH theory to other stress states, in 
particular to those with variable principal directions. In what 
follows, the results obtained in [6, 9] are taken into account.

If a multiaxial harmonic load is producing in a perfectly 
elastic solid the zero mean stress with in-phase components:

 (16)
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the equivalent reduced stress in tension-compression takes the form:

σe = σea sinωt                                                                     (17)

where: 
σja, τka – amplitudes of the stress components ; ω – circular frequency ; σea – amplitude of the reduced stress given by [8]:

 
(18)

Consequently, the criterion of an infinite fatigue life and the yield criterion read:

σea < Zrc                                                                                      (19)

σea < Re                                                                                      (20)

where:
Zrc – the fatigue limit of the material under fully reversed tension-compression.

In the high-cycle fatigue regime, the criterion of a finite fatigue life based on the S-N curve (Wöhler’s curve) is commonly 
accepted [10]. According to this approach, in the case of fully reversed tension-compression under the stress (17) one gets:

 
(21)

where:
Nd – required number of stress cycles to achieve a given design life

K – fatigue strength coefficient
m – fatigue strength exponent.

If, however, the in-phase stress (16) is applied to a viscoelastic material, its strain response is [6]:

(22)

So, the elastic strain energy per unit volume:

 (23)

becomes:

(24)

On the other hand, for the reduced stress (17) and corresponding reduced strain:

 (25)

the elastic strain energy per unit volume is given by:

 (26)
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Consequently, the relationships for distortion energies per unit volume 
in the actual and reduced stress states read:

 (27)

 (28)

Equating the right-hand sides of Eqs (27) and (28) yields again Eq. (18) 
so that the criteria (19) through (21) remain valid.

In the case of non-zero mean stress with in-phase components:

σj = σjo+ σja sinωt   ;   τk = τko + τka sinωt                                                       (29)

the equivalent reduced stress can be expressed as:

σe = σeo + σea sinωt                                                                          (30)

where: σeo is the mean value of the reduced stress. In Eq. (30), there are two unknown parameters 
of the reduced stress (σeo and σea) which cannot be determined from the single equation, 
corresponding to the HMH theory, without additional assumptions. On the other hand, 

since this theory can be applied to the stress (29) when:

σjm ≠ 0   ;   τkm ≠ 0   ;   σja = τka = 0 

and when:

σjm = τkm = 0   ;   σja ≠ 0   ;   τka ≠ 0
it should be also applicable to the stress (29) when:

σjm ≠ 0   ;   τkm ≠ 0   ;   σja ≠ 0   ;   τka ≠ 0
Therefore the following hypothesis (“average-distortion-energy strength hypothesis”) was formulated [11].

The reduced stress (30) is equivalent in terms of static and dynamic effort 
of a material to the stress (29) if:

(i) the time-independent parts of distortion energies per unit volume 
in these both stress states are equal

(ii) the reduced stress and the stress components (29) 
have the same frequency

(iii) the integral time averages of instantaneous values of distortion energies per unit 
volume in these both stress states are equal.

The distortion energy per unit volume in the general state of stress is given by [4]:

 (31)

where:

 (32)

When the stress (29) is applied to a viscoelastic material, according to Eqs (2), (12) and (22) one gets:

 (33)
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or, after sufficiently long time:

 (34)

Substitution of Eqs (3), (32) and (34) into Eq. (31) results in:

(35)

Hence the distortion energy per unit volume of the viscoelastic solid under the reduced stress (30) is:

(36)

The condition (i) gives Eq. (10), and the condition (iii), i.e.,

 (37)

leads to Eq. (18). Then the criterion of an infinite fatigue life reads [2, 10]:

 (38)

and the yield criterion is:

 (39)

At the stress (30), the criterion of a finite fatigue life of ductile materials becomes [10]:

 (40)
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Eq. (40) is valid if:

 (41)

where:
L – the maximum stress amplitude under fully reversed tension-compression 

in the high-cycle fatigue regime (above which the low-cycle fatigue may occur).

Another stress state which can be dealed with the aid of the aforementioned hypothesis 
is that with non-zero mean out-of-phase components:

σj = σjo + σja sin(ωt + φj)   ;   τk = τko + τka sin(ωt + φk)                                           (42)

where: φj and φk are the phase angles. With the known strain response of viscoelastic materials 
to the stress (42) [6] and with the reduced stress in the form (30), it is easy to prove that the mean value 

of the reduced stress is given again by Eq. (10), but now the formula for its amplitude reads:

 (43)

It means that in the considered above load cases the fatigue and yield criteria for elastic and viscoelastic solids coincide.
Of course, to be on the safe side, in Eqs (38) through (40) arbitrary safety margins may be introduced.

FAILURE CRITERIA OF VISCOELASTIC MATERIALS 
UNDER MULTIAXIAL PERIODIC LOADS

In general, structural elements and machinery details are simultaneously subjected to static and dynamic loads. In addition 
to the time-varying stress, the steady stress resulting from static load, and the mean stress (the average of the maximum and 
minimum of the cyclic stress) influence the strength of an element. It is important to recognize that the total strength of the 
element is altered if residual stresses (caused by cold forming, heat treatment, welding, etc.) exist. Since residual stresses have 
a similar influence on the fatigue behaviour of materials as do mechanically imposed constant stresses of the same magnitude 
[12], in what follows no distinction will be made between any kind of static stresses.

Among the types of dynamic loads encountered in practice, one of the most important is periodic load. In the general state 
of periodic stress, its components can be expanded in Fourier series:

 (44)

where:
σjo, τko – mean values ; φjn, φkn – phase angles of n-th terms ; ω = 2π/T – fundamental circular frequency ; T – stress period.

Our aim is to determine such a reduced stress:

σe = σeo + σea sin(ωet)                                                                        (45)

of mean value σeo, amplitude σea and circular frequency ωe, that would be equivalent to the original stress in terms of fatigue and 
yield strengths of viscoelastic materials. For this purpose the theory of energy transformation systems [13] can be used, which 
links the dissipated energy with the breakdown time of a system. According to this theory, two stress states are equivalent in 
terms of time to failure if the energies dissipated internally and externally in both these states are respectively equal. Apparently, 
the dissipated energy can be estimated by evaluation of certain symptoms, e.g., the externally dissipated energy by the vibration, 
and the internally dissipated energy by the temperature [13]. For viscoelastic materials the use can be made of the following 
relationship derived in [14] for the internally dissipated energy per unit volume under periodic stress with the components (44) 
during the period T:

 (46)

where:

 (47)
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Consequently, the following equivalency condition can be postulated:

φe(T) = φ(T)                                                                                  (48)

where:
φe(T) – the energy dissipated in the viscoelastic material per unit volume 
under the reduced stress (45) during T seconds. Under assumption that:

ωe = rω                                                                                        (49)

where:
r – natural number to be determined, on the basis of Eqs (46) and (47) one can write:

 (50)

 (51)

Thus:

 (52)

where:

 (53)

As for the remaining equations, necessary for determination of the reduced stress (45), in [9] it was assumed that the energy 
dissipated externally by materials subjected to multiaxial loads is proportional to the average strain energy of distortion per unit 
volume. Bearing in mind the role of distortion energy in evaluation of effort of ductile materials under multiaxial stresses, in 
the present paper the same assumption is retained. Derivation of similar equations based on the strain energy of volume change 
or total strain energy is analogous.

In conformity with the aforesaid, we have:

 (54)

where:

 (55)

is the strain energy of distortion per unit volume under reduced stress (45) and ψd is that under periodic stress (44). To determine 
the latter from Eqs (31) and (32), the strain response of a viscoelastic material to periodic stress must be known. This problem 
was solved in [6] to give:

 (56)

where:

is the vector of mean strain components given by Eqs (2),
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is the matrix of dynamical flexibility of the viscoelastic material at the load circular frequency nω,

is the vector of complex amplitudes of n-th terms of the stress components, defined as:

i is the imaginary unity, Im is the imaginary part, and:

is the phase angle of n-th terms of the strain components.
Eqs (31), (32) and (54) through (56) lead to:

(57)

Hence:

 (58)

which results in Eq. (10) for the reduced mean stress, and:

 (59)

where:

 (60)

From Eqs (52) and (59) one obtains:

 (61)

and:

 (62)

that is:

 (63)

Hence the real number ρ , close to the natural number r,

r = Round(ρ)                                                                                  (64)

is:

 (65)

With these results, the criterion of an infinite fatigue life and the yield criterion can be expressed by Eqs (38) and (39), 
whereas the criterion of a finite fatigue life becomes:

 (66)

where: Td – the required design life.
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CONCLUSIONS

� On the basis of the Huber-Mises-Hencky (HMH) theory 
and constitutive equations for strains in viscoelastic solids 
subjected to multiaxial static loads, it is shown that the yield 
criterion does not differ from that for perfectly elastic solids.

� On the basis of the HMH theory and constitutive equations 
for strains in viscoelastic solids subjected to multiaxial zero 
mean in-phase loads, it is shown that the criterion of  an 
infinite fatigue life, the criterion of a finite fatigue life and 
the yield criterion do not differ from those for perfectly 
elastic solids.

� With the aid of the average-distortion-energy strength 
hypothesis and constitutive equations for strains in 
viscoelastic solids subjected to non-zero mean in-phase 
loads, as well as subjected to non-zero mean out-of-phase 
loads, it is shown that the aforementioned criteria do not 
differ from those for perfectly elastic solids.

� On the basis of the theory of energy transformation systems 
and constitutive equations for strains in viscoelastic 
solids subjected to periodic loads, it is shown that the 
aforementioned criteria do not coincide with those for 
perfectly elastic solids.

� The load capacity of a homogeneous, isotropic viscoelastic 
material at a given temperature is completely defined by 
the Young modulus, tensile yield strength, S-N curve for 
tension-compression, Poisson′s ratio and coefficient of 
viscous damping of normal strain.

NOMENCLATURE

A, B – quantities defined by Eqs (53) and (60)
E – Young modulus
G – shear modulus
Hn – matrix of dynamical flexibility of the viscoelastic material 

at the load circular frequency  nω 
i – imaginary unity
Im – imaginary part
K – fatigue strength coefficient in equation of the S-N curve 

for tension-compression
L – maximum stress amplitude under fully reversed tension-

compression in the high-cycle fatigue regime (above 
which the low-cycle fatigue may occur)

m – fatigue strength exponent in equation of the S-N curve for 
tension-compression

n – natural number
Nd – required number of stress cycles to achieve a given design life
r – natural number given by Eq. (64)
Re – tensile yield strength
t – time
T – stress period 
Td – required design life
Zrc – fatigue limit under fully reversed tension-compression
α – phase angle of the strain components under in-phase loads
αe – phase angle defined by Eq. (51)
αn – phase angle defined by Eq. (47)
γk – k-th shear strain component (k = xy, yz, zx)
γko – k-th strain component under static load, mean value of 

k-th strain component
ε – vector of the strain components
εe – reduced strain
εj – j-th normal strain component (j = x, y, z)
εjo – j-th strain component under static load, mean value of j-th 

strain component
εm – quantity defined by Eq. (32)
εo – vector of the mean values of strain components
η – coefficient of viscous damping of normal strain
v – Poisson′s ratio,
ρ – number given by Eq. (65)
σe – reduced stress
σea – amplitude of the reduced stress

σeo – reduced stress under static load, mean value of the reduced 
stress

σj – j-th stress component
σja – amplitude of j-th stress component
σjn – amplitude of n-th term in Fourier expansion of σj
σjn – complex amplitude of n-th term in Fourier expansion of σj
σjo – j-th stress component under static load, mean value of j-th 

stress component
σn – vector of complex amplitudes of n-th terms in Fourier 

expansion of the stress components
τk – k-th stress component
τka – amplitude of k-th stress component
τko – k-th stress component under static load, mean value of 

k-th stress component
τkn – amplitude of n-th term in Fourier expansion of τk
τkn – complex amplitude of n-th term in Fourier expansion of τk
φj – phase angle of j-th stress component
φjn – phase angle of n-th term in Fourier expansion of σj
φk – phase angle of k-th stress component
φkn – phase angle of n-th term in Fourier expansion of τk
φ – dissipation energy per unit volume
φe – dissipation energy per unit volume under the reduced stress
ψ – strain energy per unit volume
ψd – strain energy of distortion per unit volume
ψde – strain energy of distortion per unit volume under the 

reduced stress
ψdeo – strain energy of distortion per unit volume under the 

reduced static stress
ψdo – strain energy of distortion per unit volume of perfectly 

elastic solid under static load
ψe – strain energy per unit volume under the reduced stress
ψo – strain energy per unit volume of perfectly elastic solid 

under static load
ψvo – strain energy of volume change per unit volume of 

perfectly elastic solid under static load
ω – circular frequency, fundamental circular frequency
ωe – circular frequency of the reduced stress at periodic loads
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