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PROBLEM FORMULATION 

A long tank filled with liquid can be modelled by a beam 
of rectangular cross-section and dimensions l x b x h, with 
articulated supports at two points. The supports reveal flexibility 
to vertical movements and rotation [9 12] (see Fig.1).

Fig. 1. Scheme of a model liquid-filled tank 
where:
k1, k2 – axial spring constants 
C1, C2 – spiral spring constants 
R1, R2, M1, M2 – support reactions and reaction moments, 

respectively.

When analysing free vibrations of the liquid-filled beam we 
assume that the functions of beam deflection w and velocity 
potential φ have the following harmonic form:

 (1)

 (2)

The differential equation for the liquid-filled beam is the 
following [11]:

(3)

where:
EI – flexural stiffness
ρb – beam material density,
A – cross-section area,
p2, p1 – wall pressures for y = h and y = 0,
Nh, Nd – longitudinal forces from hydrostatic and 

hydrodynamic pressure, respectively, acting on 
top walls for x = 0 and x = l.

These forces are determined using the formulas:

(4)

(5)

where:
ρ – liquid density 
g = -9.81 ms-2 – Earth gravitation.
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The hydrodynamic pressure is calculated from the Bernoulli equation:

(6)

After putting (6) into relation (5) we get the formula for Nd:

(7)

After putting (4) and (5) into the differential equation (3) and, as a substitution for pressures p2 and p1, 
into the linear part of the Cauchy-Lagrange integral we arrive at:

(8)

This is the non-linear differential equation for transverse vibrations of a long model tank filled with liquid. 
For the liquid inside the tank the Laplace equation is solved 

∇2ϕ = 0                                                                                         (9)

with the following boundary conditions for the liquid velocity potential:
� in the z-axis direction:

(10)

� in the y-axis direction:

(11)

� in the x-axis direction:

(12)

After dividing equation (8) by stiffness EI, neglecting the smal non-linear term and assuming that q(x) = 0 
we arrive at the following new form of the differential equation:

(13)

where:

This equation includes the deflection function w and the flow velocity potential ϕ. In order to get the partial differential 
vibration equation which only includes the flow velocity potential, equation (13) is to be differentiated with respect to time t, 
and then the boundary condition (11) for velocity is to be adopted. Then we get:

for y = 0                    (14)

As we can see, this is the fifth order linear partial differential equation 
which only includes the velocity potential function ϕ(x, y, z; t).

The boundary conditions for the supports have the form:

(15)
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The above support boundary conditions are also to be 
differentiated with respect to time t, and the condition (11) is 
to be adopted. Then we get:

(16)

Additionally we have: 

(17)

The transverse vibration of a beam fully filled with liquid 
and supported at two points in an arbitrary way is completely 
defined by the differential equation (14) with the support 
conditions (16) and the Laplace equation (9) with the boundary 
conditions (17) ÷ (19) for the liquid velocity: 

(18)

(19)

For free vibrations, taking into account (2) we arrive at the 
following form of equation (14):

(20)

with the boundary conditions for the velocity potential 
ϕ(x, y, z):

(21)

For the liquid inside the tank, the liquid velocity potential 
equation holds:

(22)

with boundary conditions for the velocity:

(23)

(24)

(25)

Let us introduce the „u” function defined as:

(26)

Then the vibration equation (20) can be written as:

(27)

where:

(28)

Solving equation (27) is reduced to the search for the general 
integral of the homogeneous equation and a particular integral 
of the non-homogeneous equation. The general integral of the 
associate homogeneous equation is the following [13]:

u0 = D1 + D2x + D3shax + D4chax         (29)

where:
a ≡ B. 

The particular integral of the non-homogeneous equation is 
searched for using the method of variation of constants. Finally, 
the integral of the non-homogeneous equation gets the form :

(30)

Now, the boundary conditions (21) for the potential function 
will refer to the introduced function u ≡ u(x, t). These conditions 
will allow the constants Di(i = 1, 2, 3, 4) to be determined. 
Then, these constants are to be put into the general integral 
(30), after which we get the solution in the form:

(31)
where:
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Fi(x) ≡ ui + ηix + αishax + βichax                                                              (32)

for i = 1, 2, 3, 5, 6
and 

(33)

The abovenamed coefficients: ui, ηi, αi, βi (for i = 1, 2, 3, 4, 5, 6) 
are numeric constants calculated from the following formulas:

(34)

and

(35)

Here, Q is equal to:

(36)

(37)
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Finally, the free vibration problem for a beam fixed at both 
sides and filled with liquid within the linear range has been 
reduced to solving the Laplace equation in the two-dimensional 
domain D defined as (Fig. 3)

(42)

(43)

with differential conditions, and a differential-integral 
condition.

Fig. 3. Liquid-filled beam fixed at both sides 

Let us assume that the liquid velocity potential function 
( )y,xϕ≡ϕ  is the product of two functions with separated 

variables in the form of the sum of an infinite series 

(44)

The assumed potential has to fulfil the Laplace equation. 
This way we arrive at the equation system determining 

free vibration frequencies and related modes. It is an infinite 
system of homogeneous algebraic equations. The problem of 
determining the free vibration frequency spectrum and modes 
is therefore reduced to the eigenvalue and eigenvector problem, 
written in the following matrix notation:

[Aω2 – D] [CX] = [0]                        (45)

where:
A ≡ [ajn] – symmetrical matrix of coefficients of kernel 

decomposition into the Fourier series, (formulas 46).

(46)

The matrices in the matrix equation (45) represent:
D ≡ [djj] – diagonal matrix, the element of which are calculated 

using the formula

(47)

d00 = [A1 + Bh]-1 for j = 0                  (48)

CX ≡ [CjXj] – single-column matrix, in which Cj are unknown 
constants ≠ 0

The free vibration problem of the liquid-filled beam has 
been finally reduced to solving the Laplace equation (22) with 
boundary conditions (23) ÷ (25) for the velocity potential and 
conditions (31) and (32), in which numeric coefficients are 
defined by formulas (33) ÷ (37).

From the general boundary conditions for the velocity 
potential we can derive all particular cases referring to different 
cases of beam fixing at its both ends. An exception here is rigid 
fixing, for which the constants for axial and spiral springs 
(Fig. 1) k, C → ∞ .

FREE VIBRATION OF A TANK 
COMPLETELY FILLED WITH LIQUID 

Let us return to equation (20), which is the free vibration 
equation for the liquid-filled beam. Neglecting the constant, 
the equation has the following form:

(38)

For the liquid inside the beam the Laplace equation (22) 
holds.

After integrating equation (38) four times with respect to 
the “x” variable we get:

(39)

where:

(40)

and K⏐x, ξ⏐ is a symmetrical kernel, i.e.

K⏐x, ξ⏐ = K⏐ξ, x⏐
The kernel K⏐x, ξ⏐ defined in the two-dimensional domain, 

see Fig. 2, has the following polynomial form:

(41)

Fig. 2. Graphical representation of the symmetrical kernel 
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and Xj are calculated using formulas (49) and (50):

X0 ≡ A1 + Bh for j = 0                     (49)

(50)

In a special case when the liquid is absent, i.e. when 
ρ = 0, and B = 0 the elements of the abovenamed matrices are 
determined using the following relations:

(51)

and

(52)

In this case the matrix equation (45) describes free vibrations 
of the system without liquid.

Behaviour of the liquid inside the beam during free 
vibrations.

Having known the liquid velocity potential we can 
determine the velocity field for the liquid:

(53)

where:
j,i    –  unit vectors of the Cartesian coordinate system 0xy

and

(54)

(55)

Having determined components of the liquid velocity field 
we can find the equation for the family of streamlines as: 

(56)

From the condition ψ = const we obtain the family of 
streamlines.

The pressure is calculated from the following Bernoulli 
relation:

(57)

or taking into account the velocity term [12]:

(58)

Taking only into account the amplitude of the dynamic 
pressure we arrive at:

(59)

FREE VIBRATION OF A BEAM PARTIALLY 
FILLED WITH LIQUID 

A case which most often happens in practice is when the 
tank is partially filled with liquid. A thin-wall prismatic beam 
of dimensions l × b × h is assumed, with the liquid of density ρ 
inside it. The height to which the beam is filled with the liquid 
is smaller that the h dimension of the beam.

For the 0xyz system assumed as in Fig. 4, the free surface 
of the liquid has a wavy shape described by the equation 
y=Y/x, z, t/.

Fig. 4. Beam partially filled with liquid 

Like in the previous case, we have to adopt model 
assumptions for the beam and the liquid. The liquid velocity 
potential ϕ /x,y,z,t/ fulfils the Laplace equation:

∇2ϕ = 0                                    (60)

as, by default, the flow of incompressible liquid in the beam is 
irrotational within the entire domain D defined as:

(61)

Assuming two-dimensional waves, we introduce a constant 
average height of filling H ≡ h – h*. After further transformations 
of equation (45) we arrive at infinite homogeneous equation 
system, which can be written in the matrix form:

[Aω2] [CX] = [0]                         (62)
where:
A ≡ [ajn] – symmetrical matrix of coefficients of kernel 

expansion into the Fourier series, the elements 
of which are calculated using formulas (38) 

CX ≡ [CjXj] – single-column matrix, in which Cj are constant 
unknowns ≠ 0; and Xj are calculated in the 
following way:

(63)

and
(64)

D ≡ [djj] – diagonal matrix, the elements of which are 
determined using the following formulas:

(65)
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Here we can make distinction between two limiting cases 
of liquid filling, which are :
I. where h* → h – liquid is absent
II. where h* → 0 – full filling.

Case I:
ρ = 0 i.e. B = 0 and then:

(66)

(67)

Case II:
ρ ≠ 0; h – h* → h, then:

(68)

(69)

In all above formulas A1 and B are the constants equal, 
respectively, to:

(70)

Case II is not included in the earlier obtained relations, as 
there was no free surface in those cases.

NUMERICAL SOLUTIONS 

The equation systems (45) and (62) were solved numerically 
using an in-home code written on PC computer. An infinite 
system of algebraic equations was obtained, which is fully 
regular. According to a theorem, a method of successive 
sections can be applied in this case. For the assumed section 
dimension “n” the code creates system matrices and solves 
the eigenvalue and eigenvector problem. The code calculates 
and prints the liquid pressure and velocity fields at a selected 
point of the area occupied by the liquid. For partial filling, the 
code additionally prints the deflection and the shape of the 
free surface. For this case dynamic pressure amplitudes are 
also calculated. Along with hydrodynamic frequencies in the 
deformable tank, the frequencies of the same volume of liquid 
in a rigid tank are determined as well. 

CONCLUSIONS FROM THE OBTAINED 
SOLUTIONS 

For four height-to-length ratios, i.e. 

h/l ∈ {0.02, 0.1, 0.5, 1}
transverse vibration frequency spectra were obtained, 

making use of the here presented theory and a simplified 
formula, for the tank filled with liquid. 

Figs (5) ÷ (6) show the frequency spectra for six first 
frequencies and that for the tank without liquid (curves marked 
ρ = 0 in the figures).

Fig. 5. Vibration frequency spectrum 
for the tank fully filled with liquid: h/l = 0.02

Fig. 6. Vibration frequency spectrum 
for the tank fully filled with liquid: h/l = 0.5

Dynamic pressure amplitudes and velocity field components 
were determined at all nodes of the grid of the dimensions 
l/40 × h/10. 

This made the basis for preparing diagrams of dynamic 
pressure distributions on tank walls for each of six first modes 
and for three h/l ratios. The pressure diagrams refer to the 
half-length of the tank and the fixed top wall. Sample cases 
are shown in Figs. (7÷8).

Fig. 7. Pressure distribution on tank walls 
for the first frequency and h/l = 0.5

In the case of the tank partially filled with liquid, frequency 
spectra are shown for each of the above named h/l ratios and 
four cases of liquid filling, i.e. 

H/h ∈ {0.25, 0.5, 0.75, 1}
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Fig. 10. Vibration frequency spectrum 
for the tank partially filled with liquid: h/l = 0.5

Fig. 12. Dynamic pressure distribution 
for tank bottom and top walls: h/l = 0.5, the first frequency

Fig. 13. Dynamic pressure distribution 
for tank bottom and top walls: h/l = 0.5, the second frequency

The next figures, Figs. (14÷15), show tank bottom deflection 
amplitudes and the shape of the liquid free surface for the first 
three frequencies, and for different h/l ratios and tank fillings.

where:
H – liquid column height.

Additionally, sample diagrams shown in Figs. (9÷10) 
present, as a comparison, frequency spectra which neglect the 
dynamic condition on the free surface of the liquid (curves 
marked “I”). 

Fig. 9. Vibration frequency spectrum 
for the tank partially filled with liquid: h/l = 0.1

Figures (11) show beam frequency diagrams for the first 
frequencies. The diagrams present the beam frequencies 
according to the present theory (marked "B"), those calculated 
as the reduced frequencies (marked “z”), the hydrodynamic or 
“liquid” frequencies (marked “c”) and the frequencies of the 
liquid itself in a rigid tank (marked “w”). 

Then, for two frequencies and four h/l ratios, Figs. (12÷13) 
show dynamic pressure distributions for the bottom and top 
walls, for all four fillings. These diagrams refer to the half-length 
of the tank. Obviously, the point symmetry is observed for even 
frequencies and the axial symmetry for odd frequencies.

Fig. 8. Pressure distribution on tank walls 
for the third frequency and h/l = 0,5
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Fig. 11. Beam frequency diagram for different liquid fillings: the first frequency
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Fig. 14. Tank bottom deflection amplitudes 
and free surface shapes: h/l = 0.1; the first frequency

Fig. 15. Tank bottom deflection amplitudes 
and free surface shapes: h/l = 0.5; the second frequency

CONCLUSIONS

� The presence of the liquid in the beam decreases vibration 
frequencies, compared to the frequency spectrum of the 
beam without liquid.

� The spectrum levels determined based on the here presented 
theory depend on the h/l ratio, and are above those calculated 
using a simplified formula.

� Reducing the volume of the liquid in the beam leads 
to the reduction in percentage differences between the 
abovementioned spectra, and in the limiting case of the 
absence of the liquid the frequency spectra are identical 
with each other.

� Taking into account the dynamic condition on the free 
surface moves the spectrum towards higher values. For low 
beams h/l < 0.1 this effects is negligible.

� When h/l increases, the flow of the liquid in the vicinity of 
the tank walls becomes more intensified. Vertical velocities 
of the liquid particles in the central layer and on the surface 
of the moistened tank bottom differ significantly, starting 
from the second and higher frequencies. For beams fully 
filled with liquid and the ratio h/l = 1 the motion of the 
liquid reflects the membrane principle.

� Horizontal velocity components of the liquid particles 
move the hydrodynamic pressure distribution towards 
tank tops, which increases the loads of the top walls with 
increasing h/l.
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