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Abstract
Introduction. The goal of the paper is to show that some problems formulated in the dynamics of atmospheric flight are very 
similar to the problems formulated in the biomechanics of motion and medicine. Three problems were compared: minimum-
heat transfer from the boundary layer to the ballistic missile skin, minimum-time ski descent, and the minimisation of the 
negative cumulated effect of the drug in cancer chemotherapy. Material and methods. All these problems are solved using the 
same method originally developed for aerospace systems – the method of Miele (the extremisation method of linear integrals 
via Green’s theorem). Results. It is shown that the problems arising in different branches of knowledge are very similar in prob-
lem formulations, mathematical models, and solution methods used. Conclusions. There are no barriers between different 
disciplines.
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Introduction

The paper is devoted to selected problems of optimal con-
trol in different branches of knowledge: flight dynamics, sports 
biomechanics, and medicine. It is shown that some problems are 
very similar in problem formulations and mathematical model-
ling. The point in common is the method used – the method of 
Miele. This method is a non-classical one. Since the paper is ad-
dressed to the general reader, the method in described in detail. 
Three problems were considered: the minimum-heat transfer 
problem during a re-entry manoeuvre, the minimum-time ski 
descent problem, and the minimisation of toxic effects during 
cancer chemotherapy.

Material and methods

Consider a minimised functional that is linear in the deriva-
tive y’
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   Three cases are possible: 

a) The fundamental function ω is identically equal to zero. That means ∆J = 0, and the 

functional is independent of the curve in the (x,y)-plane – the process is irrespective of 

the strategy. 

b) The fundamental function ω has the same sign, for example ω > 0. In such a case, the 

inequality is valid: ∆J > 0 or JAQB > JAPB. It means that every curve to the left gives a 

smaller value of the functional. In the limit, the minimising curve belongs to the 

border of the admissible domain. 

c) The fundamental function ω changes its sign. It means that there is a curve on which ω 

= 0 that divides the admissible domain into two subregions, where ω > 0 and ω < 0, 
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Figure 1. The graphical interpretation of different admissible strategies represented by 

arbitrarily taken curves AQB and APB 

 

 

 

 

 

 
Figure 2. The fundamental function ω changes its sign. The optimal solution contains two 

subarcs on the border of the admissible domain AN, MB and the subarc within the admissible 

domain NM where ω = 0 
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Three cases are possible:
a)	 The fundamental function ω is identically equal to zero. 

That means DJ = 0, and the functional is independent of the 
curve in the (x,y)-plane – the process is irrespective of the 
strategy.

b)	 The fundamental function ω has the same sign, for example 
ω > 0. In such a case, the inequality is valid: DJ > 0 or JAQB > 
JAPB. It means that every curve to the left gives a smaller va-
lue of the functional. In the limit, the minimising curve be-
longs to the border of the admissible domain.

c)	 The fundamental function ω changes its sign. It means that 
there is a curve on which ω = 0 that divides the admissible 
domain into two subregions, where ω > 0 and ω < 0, re-
spectively. The optimal path contains subarcs on the border 
of the admissible domain and on the curve ω = 0. This last 
subarc is a singular arc in the calculus of variations. Further 
details can be found in the work of Miele [1].

 

 

 

 

Figure 1. The graphical interpretation of different admissible strategies represented by 

arbitrarily taken curves AQB and APB 

 

 

 

 

 

 
Figure 2. The fundamental function ω changes its sign. The optimal solution contains two 
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Figure 2. The fundamental function ω changes its sign. The optimal 
solution contains two subarcs on the border of the admissible domain 
AN, MB and the subarc within the admissible domain NM where ω = 0

Results

Minimum-heat transfer strategy for the re-entry 
manoeuvre of a variable-geometry ballistic missile
The problem is formulated as follows (cf. [1] and [2]). The 

missile enters into the atmosphere without propulsion. The 
known re-entry velocity vA must be reduced to another (lower) 
known velocity vB over the given loss of altitude (hA–hB). The 
velocity is controlled by the dive brakes, so the position of the 
brakes may be regarded as a control variable that is an unknown 
function of the altitude.

The model assumptions are as follows:
a)	 The Earth is flat and non-rotating. The gravitational accele-

ration g is constant.
b)	 The trajectory is vertical, so the lifting force is zero. The re-

sults can be applied to arbitrary inclined paths by coordina-
te transformation. Other trajectories may be also conside-
red [2].

c)	 The missile is regarded as a particle.
d)	 The missile velocity is greater than the speed of sound (the 

Mach number Ma > 1).
Now, the equation of motion of the missile derives from New-
ton’s second law
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D = the drag depending on the position of the brakes. 

 

Figure 3. Model of a variable-geometry ballistic missile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The admissible domain for the minimum-heat transfer problem for a variable-

geometry ballistic missile. The upper curve minimises the functional 
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For hypervelocity flight, the following heat transfer law is valid 
([1] and [2])
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   For hypervelocity flight, the following heat transfer law is valid ([1] and [2]) 

3vK
dt
dH ρ= , (8) 

where: H – the heat transferred from the boundary layer to the missile skin, K – a 

characteristic constant, and t – the time. It means that the heat H is proportional to the work 

done by the resistive force (aerodynamic drag). The integral is equivalent to the above 

differential equation 
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and it is minimised. It should be remembered that dh is negative because the altitude 

decreases with time. The functional (9) depends on the unknown velocity v(h) that should be 

computed. The functional (9) may be expressed in the form of the linear integral (1), thus 
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   For the problem under consideration, the fundamental function is as follows 
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The sign of the fundamental function is negative within the admissible domain, and it is 

irrespective of the parameters of the model. The admissible domain is given in figure 4. 
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   The optimal strategy requires that the brakes be fully extended at the beginning of the 

descent and then fully retracted. No middle position of the brakes is optimal. 

 

   Minimum-time ski descent problem 

   The problem is formulated in the following manner (cf. [3] and [4]). A skier should cover 

the distance from the given point A to the given point B in the minimum time. In both points, 

the velocities vA and vB are also given, and vB is lower than the maximal one which could be 

achieved. This may stem from the fact that below point B, there is a difficult segment of the 

slope. The skier employs their aerodynamic drag for braking. They change their position from 

a dropped to an upright position. 

   The model assumptions are as follows: 

a) The skier is reduced to their centre of gravity. 
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(9)

and it is minimised. It should be remembered that dh is nega-
tive because the altitude decreases with time. The functional 
(9) depends on the unknown velocity v(h) that should be com-
puted. The functional (9) may be expressed in the form of the 
linear integral (1), thus
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D = the drag depending on the position of the brakes. 

 

Figure 3. Model of a variable-geometry ballistic missile 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The admissible domain for the minimum-heat transfer problem for a variable-

geometry ballistic missile. The upper curve minimises the functional 

 

 

 

 

αα

D(α)

v

h

50000

40000

30000

20000

10000

0
1000 2000 3000 4000 5000

v [m/s]

h 
[m

]

(CD)max

(CD)min

(CD)min

(CD)max

B

A

Figure 4. The admissible domain for the minimum-heat transfer 
problem for a variable-geometry ballistic missile. The upper curve 

minimises the functional

The optimal strategy requires that the brakes be fully extended 
at the beginning of the descent and then fully retracted. No 
middle position of the brakes is optimal.

Minimum-time ski descent problem
The problem is formulated in the following manner (cf. [3] 

and [4]). A skier should cover the distance from the given point 
A to the given point B in the minimum time. In both points, the 
velocities vA and vB are also given, and vB is lower than the maxi-
mal one which could be achieved. This may stem from the fact 
that below point B, there is a difficult segment of the slope. The 
skier employs their aerodynamic drag for braking. They change 
their position from a dropped to an upright position.

The model assumptions are as follows:
a)	 The skier is reduced to their centre of gravity.
b)	 The slope is a straight line (a more general case is conside-

red in Maroński’s article, where the shape of the slope may 
be represented by any continuous function [4]).

c)	 Coulomb’s law describes the friction T between the skis and 
the slope. This means that the frictional force is proportio-
nal to the normal reaction of the ground.

The equation of motion is as follows
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   The equation of motion is as follows 
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where: x – the distance covered (independent variable), α – the inclination angle of the slope, 

and μ – the frictional coefficient. This equation is valid with the boundary conditions 

( ) ( ) BBAA vxv,vxv == . (13) 

The control function (SCD(x)) should belong to the range 
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which is individual for each skier and defines their abilities of minimum and maximum 

braking. The time of covering the distance (xB-xA) is minimised 
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and this is the difference compared with the previous problem. The linear integral to be 
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is always greater than zero within the admissible domain (case (b)). 
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Minimisation of toxic effect in cancer chemotherapy
In this problem, two opposite goals should be achieved: the 

assumed destruction of the cancer cells at the end of the therapy 
and the minimised cumulative negative toxic effect of the drug 
on normal tissues. The assumptions are as follows (cf. [5] and 
[6]):
a)	 The model considers the dynamics of cancer cell population 

growth. It does not consider the dynamics of healthy cell 
population growth. The population is homogeneous.

b)	 Each mother-cell divides into two daughter-cells.
c)	 The stream of cells (the increase of cell number in the time 

unit) during division is proportional to the total number of 
cancer cells in the population. This is the fundamental as-
sumption of the Malthusian model of growth.

d)	 The drug kills daughter-cells just after division. It does not 
kill mother-cells. The maximum dosage of the drug, which 
kills all daughter-cells, is known. When the drug is not ad-
ministered, the process is not disturbed.

e)	 The number of cancer cells at the beginning of the therapy 
is known, and the number of cancer cells at the end (usually 
lower) is assumed. The model does not allow the destruc-
tion all cancer cells in the finite time of the therapy.

f)	 The functional proportional to the dose of the drug admini-
stered during the whole therapy is minimised.

g)	 The time of the therapy is given.
The dynamics of cancer cell proliferation as the drug is ad-

ministered is described by the equation (cf. [5] and [6])
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where: N – the number of cancer cells, t – the time, α – the intrinsic rate (an inverse of the 

average length of the cell cycle time – here assumed to be constant), and u(t) – the control 

function representing the probability of the youth cells surviving just after division belonging 

to the range 

1)t(u0 ≤≤ . (19) 

The value u(t) = 0 denotes that all daughter cells are killed – the maximal dosage of the drug 

is administered. The value u(t) = 1 means that all daughter cells are alive after division and 

the drug is not applied. In such a case, the number of cells N increases exponentially. 

   Let us assume that at the beginning of the therapy, the number of cancer cells NA is given. 

For the given time of the therapy, this number should be reduced to the number NB (or 

maintained at the same level), then 
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The cumulated negative toxic effect of the therapy is represented by the functional 
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The fundamental function ω(t,N) is identically equal to zero within the admissible domain 

(case (a)) 
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   There is no unique solution of this problem in contrast to the previous examples. Each curve 

that joins the initial point A and the final point B is optimal. 
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Conclusions 

 

   It is shown in the paper that some problems and methods developed in flight dynamics may 

be used in biomechanics. Three problems are tackled: the re-entry manoeuvre of a variable-

geometry ballistic missile, the minimum-time ski descent, and the optimal cancer 

chemotherapy. The same method is applied – the method of Miele originally developed for 

flight dynamics. One can find further analogies: the minimum-fuel aircraft manoeuvre and the 

minimisation of the energy consumption in cycling [7]. The method of Miele is not the only 

one that may be used in biomechanics. Chebyshev’s pseudospectral method, successfully 

applied for the minimisation of the fuel consumption of commercial aircraft and record 

vehicles ([8] and [9]), may be employed for the minimum-time running problem [10]. The 

conclusion is that there are no barriers between different disciplines. Development is more 

intensive in the areas related to military applications where expenditures and efforts are much 

higher comparing with other branches. However, the ideas and the methods may be 

successfully transferred. 

 

Acknowledgements 

 

   The theses of the paper were presented during the “Symposium on Biomechanics of Sport 

and Rehabilitation” in Warsaw, September 2015. 

 

Literature 

 

(22)

The fundamental function ω(t,N) is identically equal to zero 
within the admissible domain (case (a))

 

 

and it is minimised. The linear integral (1) takes the form 

∫ 







α

−+=
B

A
B dN

N2
1dt5.0J . (22) 

The fundamental function ω(t,N) is identically equal to zero within the admissible domain 

(case (a)) 

( ) 0N,t ≡ω . (23) 

   There is no unique solution of this problem in contrast to the previous examples. Each curve 

that joins the initial point A and the final point B is optimal. 

 

fig. 7 

 

Conclusions 

 

   It is shown in the paper that some problems and methods developed in flight dynamics may 

be used in biomechanics. Three problems are tackled: the re-entry manoeuvre of a variable-

geometry ballistic missile, the minimum-time ski descent, and the optimal cancer 

chemotherapy. The same method is applied – the method of Miele originally developed for 

flight dynamics. One can find further analogies: the minimum-fuel aircraft manoeuvre and the 

minimisation of the energy consumption in cycling [7]. The method of Miele is not the only 

one that may be used in biomechanics. Chebyshev’s pseudospectral method, successfully 

applied for the minimisation of the fuel consumption of commercial aircraft and record 

vehicles ([8] and [9]), may be employed for the minimum-time running problem [10]. The 

conclusion is that there are no barriers between different disciplines. Development is more 

intensive in the areas related to military applications where expenditures and efforts are much 

higher comparing with other branches. However, the ideas and the methods may be 

successfully transferred. 

 

Acknowledgements 

 

   The theses of the paper were presented during the “Symposium on Biomechanics of Sport 

and Rehabilitation” in Warsaw, September 2015. 

 

Literature 

 

(23)

There is no unique solution of this problem in contrast to the 
previous examples. Each curve that joins the initial point A and 
the final point B is optimal.

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The admissible domain for the minimisation of the toxic effect in cancer 

chemotherapy. The optimal solution is non-unique 

 

u = 1
u = 0

u = 1/2

0

1

2

3

4

0 2 4 6 8 10 12 14
t

N/NA

u = 0 u = 1

Figure 7. The admissible domain for the minimisation of the toxic 
effect in cancer chemotherapy. The optimal solution is non-unique

Conclusions

It is shown in the paper that some problems and methods 
developed in flight dynamics may be used in biomechanics. 
Three problems are tackled: the re-entry manoeuvre of a vari-
able-geometry ballistic missile, the minimum-time ski descent, 
and the optimal cancer chemotherapy. The same method is 
applied – the method of Miele originally developed for flight 
dynamics. One can find further analogies: the minimum-fuel 
aircraft manoeuvre and the minimisation of the energy con-
sumption in cycling [7]. The method of Miele is not the only one 
that may be used in biomechanics. Chebyshev’s pseudospectral 
method, successfully applied for the minimisation of the fuel 
consumption of commercial aircraft and record vehicles ([8] and 
[9]), may be employed for the minimum-time running problem 
[10]. The conclusion is that there are no barriers between dif-
ferent disciplines. Development is more intensive in the areas 
related to military applications where expenditures and efforts 
are much higher comparing with other branches. However, the 
ideas and the methods may be successfully transferred.
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