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Abstract 
We investigated the gantry-angle classifier performance with a fluence map using three machine-learning algorithms, 
and compared it with human performance. Eighty prostate cases were investigated using a seven-field-intensity 
modulated radiotherapy treatment (IMRT) plan with beam angles of 0°, 50°, 100°, 155°, 205°, 260°, and 310°. The k-
nearest neighbor (k-NN), logistic regression (LR), and support vector machine (SVM) algorithms were used. In the 
observer test, three radiotherapists assessed the gantry angle classification in a blind manner. The precision and recall 
rates were calculated for the machine learning and observer test. The average precision rate of the k-NN and LR 
algorithms were 94.8% and 97.9%, respectively. The average recall rate of the k-NN and LR algorithms were 94.3% 
and 97.9%, respectively. The SVM had 100% precision and recall rates. The gantry angles of 0°, 155°, and 205° had an 
accuracy of 100% in all algorithms. In the observer test, average precision and recall rates were 82.6% and 82.6%, 
respectively. All observers could easily classify the gantry angles of 0°, 155°, and 205° with a high degree of accuracy. 
Misclassifications occurred in gantry angles of 50°, 100°, 260°, and 310°. Machine learning could better classify gantry 
angles for prostate IMRT than human beings. In particular, the SVM algorithm had a perfect classification of 100%. 
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Introduction 

Machine learning is an interdisciplinary field that combines 
computer science and mathematics to develop models to 
deliver maximum prediction accuracy. Findings on machine 
learning for medical physics fields have been reported [1-3]. 
For instance, Zhu et al. developed a planning quality 
quantitative evaluation tool using a machine-learning approach 
[2]. Carlson et al. used machine-learning techniques to train 
models to predict discrepancies between planned and delivered 
movements of multileaf collimators (MLCs), assessed the 
accuracy of the model predictions, and examined the effects of 
these errors on quality assurance (QA) procedures and 
dosimetry [3]. A new assistance tool called knowledge-based 
planning (for radiation treatment planning), was developed and 
released for clinical use. Knowledge-based planning is a 
promising technique that has been demonstrated to improve 
plan quality and increase planning efficiency [4,5]. Medical 
physicists need to facilitate the introduction of this technology 
to the radiotherapy field [6]. 
 Intensity modulated radiotherapy treatment (IMRT) for 
prostate cancer can improve target coverage, and reduce the 
organ at risk (OAR) dose relative to a three dimensional 

conformal radiotherapy (3D-CRT) [7]. An IMRT fluence map 
is modulated by various optimization parameters during the 
treatment planning process. In practice, OAR must be avoided 
using a large number of intensity modulations. To verify the 
delivered treatment methods using a fluence map, patient-
specific QA is partly performed using two-dimensional 
detector arrays (such as an electronic portal imaging device), 
prior to treatment [8,9]. A standard beam arrangement and 
constraint template are used, as the position relationship among 
the bladder, rectum, and prostate is in the same geometry in 
each patient. Therefore, the fluence map is quite similar, even 
if the patients are different. We questioned whether a gantry 
angle could be classified using machine learning. Image 
classification using a machine-learning algorithm can identify 
which category new images belong to according to a training 
dataset that contains images whose category is known. If a 
fluence map could be classified using machine learning, it 
could be used to detect possible inappropriate delivery of the 
linear accelerator system or for QA purposes. 
 In this study, we investigated the gantry-angle classifier 
performance using a machine-learning algorithm and compared 
it with human performance. 
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Materials and Methods 

Treatment-planning process 
The analysis included data for 80 prostate cases. A seven-field 
coplanar treatment plan (with beam angles of 0°, 50°, 100°, 
155°, 205°, 260°, and 310°) was generated by a 6-MV X-ray 
beam using a Vero4DRT system (Mitsubishi Heavy Industries, 
Ltd., Hiroshima, Japan, and BrainLAB, Feldkirchen, Germany) 
with a 5 mm-wide MLC. The properties of the Vero4DRT 
system are described elsewhere [10]. A mean dose of 74 or 78 
Gy was prescribed for the planning target volume (PTV) in 37 
or 39 fractions for all patients. The treatment plans were 
created using an iPlan® RT v. 4.5.3 treatment planning system 
(TPS) (BrainLAB, Feldkichen, Germany), and the Monte Carlo 
dose calculation algorithm was used with a spatial resolution of 
2.0 mm and a mean variance of 1%. The fluence map of each 
gantry angle was exported from the TPS (Figure 1). The 
fluence map has a spatial resolution of 1.0 mm and 151 × 151 
pixels. Five hundred and sixty fluence maps were used in this 
study. 
 

 

Figure 1. Typical per-field fluence map for each gantry angle for 
prostate IMRT. 

 

Machine learning  
We randomly split our dataset into 420 fluence maps for the 
training set, and 140 for the test set. All images for machine 
learning were scaled to a size of 50 × 50 pixels. Down 
sampling is commonly used to reduce the size of the data to 
process. The training set represents the set of pixel data and 
their respective angles that we input to our machine-learning 
model to learn. For classification in the computer, various 
classifiers are available that possess different characteristics 
and features. Three machine-learning algorithms were used in 
this study: k-nearest neighbor (k-NN), logistic regression (LR), 
and support vector machine (SVM). All hyper-parameters were 
tuned using the grid-search cross-validation method to identify 
the best algorithm. Grid search is the simplest method to train 
an algorithm. A fivefold cross validation was used to obtain 
higher cross-validation accuracy. For the k-NN algorithm, k in 
k-NN is the number of instances taken into account for the 
determination of affinity with classes. We searched a few 
possible candidates for k (in the order 1–20) and determined 
the optimal k = 3. For the LR algorithm, the parameter C is the 
inverse of regularization strength and is an important factor. 
We searched a few possible candidates for C (0.001, 0.01, 0.1, 
1, 10, and 100) and determined the optimal C = 1.0. For the 
SVM algorithm, a kernel function was chosen to create the 
model. The four basic kernels are linear, polynomial, radius 
basis function, and sigmoid. We used the linear kernel in the 

SVM algorithm. The test set represents the set of pixel data and 
their respective angles used to evaluate our model predictions. 
All scientific computing tasks were performed using Python 
v.3.6.0 (http://www.python.org). Statistical modeling was 
performed using SciKit-Learn v.0.18 (http://scikit-learn.org). 
 We calculated the precision and recall rates of the gantry-
angle classifier performance using the following equations: 

Precision =

�


��
�
 Eq. 1 

Recall =

�


��
�
 Eq. 2 

where TP, FN, FP, and TN are true positive, false negative, 
false positive, and true negative, respectively. The time-
measurement function in Python was used to measure the 
computation time spent for the test data with each machine 
learning iteration. 
 

Observer test 
For the observer test, we used the same total of 140 fluence 
maps as the test set for machine learning. Three radiotherapists 
that use the Vero4DRT system in a clinical study 
independently assessed the gantry angle classification in a 
blind manner. Informed consent was obtained from all 
observers. Each observer was given training time and we 
measured the time spent reading the images. The gantry angle, 
which was classified by the observers, was written in the 
answer column. After the gantry angle classification in the 
fluence map was presented to the three observers, we 
calculated the precision and recall rates of the gantry angle 
classifier performance using the above equations. 
 

Results 

Table 1 shows the precision and recall rates for the machine 
learning and observer test. The confusion matrix results for the 
machine learning and observer test are shown in Figure 2. 
With regard to machine learning, the average precision and 
recall rates of the k-NN algorithm were 94.8% and 94.3%, 
respectively. The average precision and recall rates of the LR 
algorithm were 97.9% and 97.9%, respectively. The SVM 
algorithm had a perfect classification rate of 100%. The 
precision rates for the k-NN and LR algorithms ranged from 
83.3% to 100% and from 95.2% to 100%, respectively. The 
recall rates of the k-NN and LR algorithms were from 80.0% to 
100% and from 95.0% to 100%, respectively. The gantry 
angles of 0°, 155°, and 205° displayed an accuracy of 100% in 
all algorithms. 
 Figure 3 shows an example of the incorrect classifier 
predictions using machine learning. Most machine-learning 
algorithm errors were caused by a misclassification in gantry 
angles of 50°, 100°, 260°, and 310°. The predicted times per a 
set of 140 fluence maps for the k-NN, LR, and SVM 
algorithms were 0.093, 0.001, and 0.027 s, respectively. 
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With regard to the observer test, the average precision and 
recall rates were 82.6% and 82.6%, respectively. The precision 
rate by the observers ranged from 64.2% to 98.4%, 
respectively. The average recall rate by the observers ranged 
from 56.7% to 100%, respectively. All observers easily 
classified the gantry angles of 0°, 155°, and 205° in our test set 

with high accuracy. Similar to machine learning, most observer 
errors came from the misclassification of gantry angles of 50°, 
100°, 260°, and 310°. The average time for the observers was 
776 s. 
 

 

Table 1. Precision and recall rates for each angle using k-NN, LR, and SVM algorithms and observer test. 

gantry 
angle (°) 

k-NN  LR  SVM  observer 

precision (%) recall (%)  precision (%) recall (%)  precision (%) recall (%)  precision (%) recall (%) 

0 95.2  100.0  100.0 100.0  100.0 100.0  98.4 100.0 

50 83.3 100.0  95.2 100.0  100.0 100.0  64.2 56.7 

100 100.0 80.0  100.0 95.0  100.0 100.0  64.7 73.3 

155 100.0 100.0  95.2 100.0  100.0 100.0  98.3 96.7 

205 100.0 100.0  100.0 100.0  100.0 100.0  96.7 98.3 

260 94.7 90.0  100.0 95.0  100.0 100.0  79.0 81.7 

310 90.0 90.0  95.0 95.0  100.0 100.0  76.8 71.7 

average 94.8 94.3  97.9 97.9  100.0 100.0  82.6 82.6 

 

 

Figure 2. Confusion matrix for (a) k-NN, (b) LR, (c) SVM algorithms, and (d) observers for each gantry angle. The column consists of the 
true labels, and the predicted labels are shown in the rows. 
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Figure 3. Incorrect fluence map test set predictions using k-NN, 
LR, and SVM algorithms. The k-NN and LR algorithms caused 
the misclassification in gantry angles of 50°, 100°, 260°, and 310°. 
The SVM algorithm could correctly classify all gantry angles. 

 

Discussions 

We reported the gantry-angle classification performance with 
fluence maps using three machine-learning algorithms. 
Furthermore, we compared the results of the observer test with 
those using machine learning. The performance results of the 
three machine-learning algorithms all differed from one 
another. The kNN algorithm is simplest instance based learning 
method used to classify objects based on their closest training 
examples in the feature space. LR algorithm focuses on 
maximizing the probability of the data. SVM algorithm tries to 
find the widest possible separating margin of the data. All 
machine-learning algorithm results in this study significantly 
outperformed the observer test results. Moreover, the observer 
test achieved a poor average recall rate of 83.0%, while the 
best performing machine-learning approach, SVM, achieved 
perfect 100% performance. The gantry angle with a fluence 
map for prostate IMRT could be easily classified by SVM 
machine learning. In the observer test, fluence maps with 0°, 
155°, and 205° gantry angles were easily classified because 
modulation is produce dose distribution sparing the rectum. In 
the other gantry angles, the target or OAR shapes, volumes, 
patient sizes, and optimization weight conditions were more 
difficult to classify in terms of visual appearance. Some fluence 
maps could not even be classified by the k-NN and LR 
machine-learning algorithms. A large number of the machine 
learning misclassifications were due to mistakes at 50° for 100° 
and 260° for 310° (and vice versa), as these fluence maps are 
very similar (Figure 3) and depend on rectum, bladder, and 
prostate sizes. Thus, the fluence map pattern varies slightly 
vary from patient to patient. We should emphasize that the 

classification of these gantry angles is a very difficult and time 
consuming task for human beings. When compared to the 
human observer prediction time, the k-NN, LR, and SVM 
algorithms had nearly instantaneous prediction times, which 
were primarily dependent on the computer execution 
environment. 
 The SVM algorithm perfectly classified the gantry angle for 
prostate IMRT in this study. The SVM algorithm is widely 
used and well known in the machine-learning field. Several 
authors have used the SVM algorithm to predict radiation 
pneumonitis after chemotherapy [11], local control after lung 
stereotactic body radiotherapy [12], and chemoradiosensitivity 
in esophageal cancer [13]. Machine learning plays an essential 
role in medical image analysis and computer-aided diagnosis 
because accurately representing the lesions and organs in 
medical images may be to complex to understand using only a 
simple equation [14]. 
 A question arises on how to introduce our results to the 
medical physics fields. In the current system, the IMRT plan is 
created by a medical physicist. Semi-automated planning 
algorithms have been recently used to improve the overall plan 
quality and consistency, and to decrease the time required for 
planning [15]. Machine create treatment plans may be able to 
use a similarity fluence map to enhance the reliability of 
treatment planning. 
 A limitation of the current study is that we used only k-NN, 
LR, and SVM algorithms for machine-learning. SciKit-Learn 
has additional sets of statistical learning algorithms. For future 
work, we hope to improve machine learning accuracy using 
more sophisticated classifiers. 
 

Conclusion 

We have investigated the gantry angle classification 
performance with a fluence map using three machine learning 
algorithms, and compared their performance with that of 
human beings. The SVM algorithm achieved the best correct 
recognition rate of 100%, followed by the LR and k-NN 
algorithms with a near 95% accuracy. The precision and recall 
rates by machine learning in all gantry angles were higher than 
those by the observers. This study shows that machine learning 
can better classify gantry angles with a fluence map than 
human beings. 
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