Hybrid Monte Carlo source model: Advantages and deficiencies

Open access


Monte Carlo (MC) simulation is the gold standard for dose calculation. An accurate mathematical source model can be used for the radiation beams. Source models can consist of sub-sources or fewer sources with data that need to be measured. This can speed up treatment plan verification without the need for a full simulation of the radiation treatment machine.

Aims: This study aimed to construct a novel hybrid source model for 6 MV photon beams for an Elekta Synergy accelerator and to commission it against measured beam data and treatments plans.

Methods and Material: The model comprised of a circular photon and planar electron contamination source. The modified Schiff formula provided off-axis variable bremsstrahlung spectra. Collimation and scatter were modelled with error functions. An exponential function modelled the transmitted fluence through the collimators. The source model was commissioned by comparing simulated and measured MC data. Dose data included profiles, depth dose and film measurements in a Rando phantom. Field sizes ranged from 1 × 1 cm2 to 40 × 40 cm2.

Results: Regular, wedged and asymmetrical fields could be modelled within 1.5% or 1.5 mm. More than 95% of all points lie within 3% or 3 mm for the multi-leaf collimators contours data. A gamma criterion of 3% or 3 mm was met for a complex treatment case.

Conclusions: The two sub-source model replicated clinical 6 MV Elekta Synergy photons beams and could calculate the dose accurately for conformal treatments in complex geometries such as a head-and-neck case.

[1] Fix MK, Keall PJ, Dawson K, Siebers JV. Monte Carlo source model for photon beam radiotherapy: photon source characteristics. Med Phys. 2004;31(11):3106-3121.

[2] Deng J, Jiang SB, Kapur A, et al. Photon beam characterization and modelling for Monte Carlo treatment planning. Phys Med Biol. 2000;45(2):411-427.

[3] Chetty I, DeMarco JJ, Solberg TD. A virtual source model for Monte Carlo modelling of arbitrary intensity distributions. Med Phys. 2000;27(1):166-172.

[4] Fix MK, Keller H, Rüegsegger P, Born EJ. Simple beam models for Monte Carlo photon beam dose calculations in radiotherapy. Med Phys. 2000;27(12):2739-2747.

[5] Fix MK, Stampanoni M, Manser P, et al. A multiple source model for 6 MV photon beam dose calculations using Monte Carlo. Phys Med Biol. 2001;46(5):1407-1427.

[6] Yang J, Li JS, Qin L, et al. Modelling of electron contamination in clinical photon beams for Monte Carlo dose calculation. Phys Med Biol. 2004;49(12):2657-2673.

[7] Keall PJ, Siebers JV, Libby B, Mohan R. Determining the incident electron fluence for Monte Carlo-based photon treatment planning using a standard measured data set. Med Phys. 2003;30(4):574-582.

[8] Walters B, Kawrakow I, Rogers DW. DOSXYZnrc Users Manual. NRCC Report PIRS-794revB. Ottawa, ON: National Research Council of Canada; 2009.

[9] Fippel M, Haryanto F, Dohm O, et al. A virtual photon energy fluence model for Monte Carlo dose calculation. Med Phys. 2003;30(3):301-311.

[10] Fix MK, Keall PJ, Siebers JV. Photon-beam subsource sensitivity to the initial electron-beam parameters. Med Phys. 2005;32(4):1164-1175.

[11] Sterpin E, Chen Y, Lu W, et al. On the relationships between electron spot size, focal spot size, and virtual source position in Monte Carlo simulations. Med Phys. 2011;38(3):1579-1586.

[12] Deng J, Guerrero T, Ma CM, Nath R. Modelling 6 MV photon beams of a stereotactic radiosurgery system for Monte Carlo treatment planning. Phys Med Biol. 2004;49(9):1689-1704.

[13] Chaves A, Lopes MC, Alves CC, et al. A Monte Carlo multiple source model applied to radiosurgery narrow photon beams. Med Phys. 2004;31(8):2192-2204.

[14] Verhaegen F, Seuntjens J. Monte Carlo modelling of external radiotherapy photon beams. Phys Med Biol. 2003;48(21):R107-R164.

[15] Desobry GE, Boyer AL. Bremsstrahlung review: an analysis of the Schiff spectrum. Med Phys. 1991;18(3):497-505.

[16] Desobry GE, Boyer AL. An analytic calculation of the energy fluence spectrum of a linear accelerator. Med Phys. 1994;21(12):1943-1952.

[17] Baker CR, Peck KK. Reconstruction of 6 MV photon spectra from measured transmission including maximum energy estimation. Phys Med Biol. 1997;42(11):2041-2051.

[18] Baker CR, Ama’ee B, Spyrou NM. Reconstruction of megavoltage photon spectra by attenuation analysis. Phys Med Biol. 1995;40(4):529-542.

[19] Partridge M. Reconstruction of megavoltage photon spectra from electronic portal imager derived transmission measurements. Phys Med Biol. 2000;45(10):N115-N131.

[20] Tailor RC, Tello VM, Schroy CB, et al. A generic off-axis energy correction for linac photon beam dosimetry. Med Phys. 1998;25(5):662-667.

[21] Smit C, du Plessis F. SU-E-T-238: deriving electron contamination spectra from pure and clinical photon beams. Med Phys. 2015;42(6):3387.

[22] Aldelaijan S, Mohammed H, Tomic N, et al. Radiochromic film dosimetry of HDR (192)Ir source radiation fields. Med Phys. 2011;38(11):6074-6083.

[23] Butson MJ, Cheung T, Yu PK. Scanning orientation effects on Gafchromic EBT film dosimetry. Australas Phys Eng Sci Med. 2006;29(3):281-284

Polish Journal of Medical Physics and Engineering

The Journal of Polish Society of Medical Physics

Journal Information

CiteScore 2017: 0.19
ICV 2017 = 103.49

SCImago Journal Rank (SJR) 2017: 0.104
Source Normalized Impact per Paper (SNIP) 2017: 0.233


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 316 316 21
PDF Downloads 164 164 10