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Abstract 
Manual analysis of brain tumors magnetic resonance images is usually accompanied by some problem. Several 
techniques have been proposed for the brain tumor segmentation. This study will be focused on searching popular 
databases for related studies, theoretical and practical aspects of Convolutional Neural Network surveyed in brain tumor 
segmentation. Based on our findings, details about related studies including the datasets used, evaluation parameters, 
preferred architectures and complementary steps analyzed. Deep learning as a revolutionary idea in image processing, 
achieved brilliant results in brain tumor segmentation too. This can be continuing until the next revolutionary idea 
emerging. 
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Introduction 

The brain tumor is generated by abnormal growth of pathologic 
cells in the brain [1-3]. Due to the brain's role in the body, the 
people who are affected by tumors may have a serious 
dysfunction in sensation, movement, equilibrium, cognition [2, 
4-6]. Brain tumors categorized into intra-axial and extra-axial 
in radiologic findings and benign and malignant types in 
pathologic findings. Based on International Cancer Research 
Center Report (2012), over 250000 people identified with 
primary brain tumor in the world which is about two percent of 
all the number of cancers [7]. Moreover, one quarter of deaths 
by cancers are caused by metastases to the brain [8,9]. The 
detection of the brain tumors is done by imaging. Different 
Imaging techniques used to show structural or functional 
abnormality, like CT scan, MRI, MRS, FMRI, SPECT and 
PET, and MRI is the most useful and common modality to 
show the tumors [10]. Manual analysis of brain tumors based 
on MR images is usually accompanied by numerous problems: 
different size, shape, texture and consistency of tumors can 
lead to different results in MR images analysis. Also, the large 
number of images in each study increases time of data 

acquisition and analysis [11]. All of the mentioned factors may 
cause wrong results and delay in decision making [1-4]. 
 One of the most and recent techniques which are used by 
neurosurgeons or radiologists is extracting tumor’s information 
to show of the tumors [17]. The segmentation of tumors 
includes extraction, measurement, visualization and 
presentation of the tumors [5-9]. Correct segmentation of brain 
tumors can be used for accurate brain modeling and pathologic 
atlases generation [23,24]. 
 Several techniques have been proposed for the brain tumor 
segmentation [10,13,16,25-32]. Unfortunately the common 
practical techniques have some limitations. In recent years, the 
use of deep learning techniques in image processing 
application has grown significantly. This study will take a 
detailed review at the practical aspects of using the deep 
learning methods in brain tumor segmentation. 
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Method 

In this review, we searched IEEE, PubMed, arXiv and Google 
scholar databases for studies using the combinations of 
following search keywords: “Brain Tumor Segmentation”, 
“brain tumor detection”, “brain MRI segmentation” “deep 
learning” and “convolutional neural network”. Publications in 
the English language were considered, but we did not impose 
study design or selection limitations. Review was conducted 
from relevant articles published between 2010 and 2016. 
 

Brain tumor segmentation 

Image segmentation in the field of computer science, is 
partitioning of one image into multiple segments to distinguish 
objects from background [10] This process is represented by 
sub-images, non-overlapped regions with two properties: 
Homogeneity within a region, Heterogeneity between the 
regions [11]. This method is used more meaningful and easier 
to analyze [12]. Based on various parameters should be 
considered in any image segmentation task, it has become a 
complex and multi objective problem [40,42]. Variation in 
tumor tissue characteristics like shape, size, gray level 
intensities and localization of tumor may affect on the results 
of processing [16, 33-36]. In addition, the complicated shape of 
brain tissues and the structures surrounding the tumor can 
make it much more sophisticated [37] The other great 
complexity is when we want to convert the visual information 
to meaningful regions as a level of semantic understanding of 
the image contents [43]. 
 With correct brain tumor segmentation, the neurosurgeons 
are able to understand the location of tumor regions, active 
tumor tissues, necrotic tissue and edema therefore, it seems that 
it is a very relevant method for surgical planning. This 
technique is done by identifying abnormal areas of the brain 
when compared to normal tissues [13,14,38]. Figure 1 shows 
some examples of brain tumor MR images with their ground 
truth segmentation (manually segmented by experts). 
 

 
Figure 1. Brain Tumor MRI Scans: top to down: Flair, T1, T1 
with contrast, T2 and ground truth (BRATS) 

As we mentioned, the problems in manual analysis of brain 
tumor segmentation using of image processing techniques are 
growing [14-16]. Contemplation in the evolution of brain 
tumor segmentation techniques represent a series of efforts 
towards achieving the automatic and accurate methods. 
Meanwhile three generations of image segmentation algorithms 
have been introduced in the past decades to this goals [2,15,16, 
26,27,45-54]. The first group of segmentation techniques 
consist of heuristic methods. Examples of such algorithms are 
the use of threshold level [17], area growth [18] and 
separation/merge edge detections [16,19]. The general feature 
of these techniques is the simplicity of their implementation, 
but the major challenge is the trouble in achieving the desired 
result when the test conditions have little change compared to 
their training setting. 
 The second group of techniques are based on probabilistic 
models and optimization methods such as: artificial neural 
networks [20,21], Bayesian models [22], fuzzy clustering [23] 
and support vector machines [24]. Also, techniques like 
Gaussian mixture models, linear and non-linear dynamic 
systems, conditional random fields, maximum entropy 
(MaxEnt) models, logistic regression, kernel regression and 
extreme learning machines are in this category [61-64]. These 
group of techniques are effective in solving simple or well-
constrained problems, but their low modeling capacity cause 
problems when dealing with complex real-world issues 
involving natural signals and images processing [65]. 
 The third group of methods seek to achieve the desired result 
based on the use of higher levels of knowledge. Such 
knowledge can be inferred from tacit information, rules, and 
models being created by human or patterns extracted from the 
bulky data sets. The sample of this generation include Atlas-
based segmentation [25] and Deep Learning based methods 
[26] which is fascinatingly modeled based on the human vision 
system. Deep learning is a new window to the field of image 
processing and may revolutionize the medical image 
processing applications. 
 

Deep Learning 

The human brain's information processing mechanism uses 
deep architectures to extract complex patterns of information 
from rich sensor sources. For example, a sound processing and 
production system in humans is equipped with hierarchical 
layered structures to convert waveform information to verbal 
mode and vice versa [68-71]. Also the human vision system is 
naturally based on a hierarchical structure [72-74]. Modeling of 
the human brain as the best and most complete samples of 
natural processors, can guarantee that the most advanced mode 
of natural signal processing can be achieved by developing by 
hierarchical learning as in deep learning algorithms [65]. With 
this idea, deep learning is considered as a hierarchical model 
which designed to imitate the learning process of the brain's 
information processing system. 
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Deep learning is a hierarchical model, designed with the aim of 
mimicking the brain's learning process. The deep learning 
hypothesis is based on the fact that in order to represent a high 
level of data, a hierarchy of intermediate representations should 
be generated. Deep learning refers to the learning of multiple 
levels of representations in order to understand data such as 
images, audio and text. It includes a kind of machine learning 
techniques that use a large number of processing layers of 
linear and nonlinear transforms, with or without supervisor in 
order to feature extraction, pattern analysis and classification 
[75-79]. 
 In Deep learning, the first level of representation can be 
Gabor-like filters, the second level involves identifying lines 
and angles and the higher levels are gradually moving towards 
objects and concepts recognition tasks [75-79]. The early idea 
of deep learning architecture dates back to the 1980s, but due 
to technical difficulties, their use in practical applications is 
restricted to the last decade. Some factors make them more 
popular such as: 

· the existence of labeled training collections (some with a 
total of millions of educational samples); 

· more powerful processors along with new generation of 
GPUs with parallel processing; 

· optimized algorithms for training the models [65,76-79]. 

Deep learning algorithms are capable of learning low-level 
features and turning them into complex data representation in a 
hierarchical mode [80]. Unlike other machine learning 
techniques that feature engineering plays a fundamental role in 
their success, deep learning methods attempt to learn the 
hierarchy of features directly from raw data [81,82]. Various 
methods have been developed to implement the deep learning 
idea include convolution neural networks (CNN), deep belief 
networks and deep Boltzmann machine. Among these methods, 
the best technique for exploiting the benefits of 
multidimensional spatial data such as image, sound and time 
series is CNN [83]. 
 CNNs are designed to work on multidimensional data, 
especially images and videos, and has shown its success in 
many image processing applications [27,80]. CNN idea in the 
field of deep learning, is based on some structural principles 
derived from a type of the artificial neural networks named 
multi-layered perceptron (MLP) [28,29]. The CNN functional 
idea, derived from time delayed neural networks, uses the idea 
of sharing intra-network weights in order to reduce the network 
computing time [30]. In this regard, CNN can be considered as 
a structure similar to multi-layered neural networks and 
functionally based on latency networks. 
 CNNs can be used on raw multidimensional data without 
preprocessing operations. The Convolutional Neural Network 
is able to learn the deep general features of multidimensional 
data such as the image through two basic operations: 
convolution and sampling. 
 

Convolutional Neural Network (CNN) in 
brain tumor segmentation 

The CNN structural idea is derived from the multilayered 
perceptron (MLP) because of the use of layered structure [84-
86]. Also, the CNN functional idea is based on time delayed 
neural networks, which uses sharing the intra-network weights 
in order to reduce the network computations [87]. CNNs can be 
used on raw multi-dimensional data without preprocessing 
phase, with a variety of operations, such as convolution, 
sampling and rectified linear unit, it is able to extract a variety 
of features from raw data [83]. 
 Like other image processing applications, CNN has been 
successful in brain tumor segmentation too. Table 1 
summarized details of brain tumor segmentation using CNN-
based techniques. Also method of deep learning, 2D/3D 
analysis, implementation tools, datasets, evaluation and 
important points related to each studies have been covered. In 
order to investigate the findings, the data in Table 1 
represented in distilled form in Figure 1 (a-g). 
 

Discussion 

The details of implementing the CNN algorithms in the brain 
tumor segmentation presents some tips such as: 
implementation tools, architectures, input dimensionality, 
datasets and algorithm evaluation criterions. 
 The analysis of the tools mentioned in the studies for CNN 
implementation in brain tumor segmentation shows that the 
Caffe and the Pylearn's have the major contributions in the 
implementation. Caffe is implemented in C++ programming 
language, the Python and MATLAB wrappers are available too 
[34]. On the other hand, Pylearn is one of the most successful 
python libraries in the field of deep learning [35]. In addition, 
there are some platforms like Tensorflow that can be used with 
the both programming language and are gradually going 
popular in deep learning applications. 
 The dominant CNN architecture in the brain tumor 
segmentation is Fully Convolutional Network [FCN]. 
 Fully convolutional network [FCN] is a successful model for 
image segmentation, which preserves the spatial structure of 
predictions [36]. In the FCN architecture, a combination of 
convolution, sampling and deconvolution are used. The point is 
the distinction between these two models. The first network 
uses some of the second networks with more limited layers.  
Indeed, FCN consists of convolution, de-convolution [37], or 
max-pooling in each layer. 
 With crossing the input data through the early layers of this 
architecture, convolution, deconvolution and sampling are 
used, which compresses information in large number of tiny-
sized feature maps in the middle layers. Subsequently, using 
deconvolution and sampling, the intermediate feature maps 
combined together and rebuild the output, which is usually the 
same size as the input and in the segmented form.  
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Table 1. Techniques used in brain tumor MRI images automatic segmentation 

Extra notes Evaluation Dataset Implementation 2D/3D Method Year Author  

N4ITK bias field 
correction 

Dice 87% 
PPV 84% 
Sen 85% 

BRATS Pylearn2  FCN 2014 Davy et al 1 

Inhomogeneity correction 
in each channel 

Accuracy 83% BRATS Caffe 2D 
CNN with multi-channel 

convolutions 
2014 Zikic et al 2 

Using atlas Dice 83% BRATS MATLAB 2D 
Convolutional Restricted 

Boltzman Machine + atlas-based 
probabilistic model 

2015 Mikael Agn 3 

Local structure prediction 
combined with standard 

prediction methods 
Dice 83% BRATS Not-detected 2D CNN 2015 Dvorak & Menze 4 

ITK preprocessing Accuracy 67% BRATS Caffe 2D CNN 2015 
Rao, Shari Sarabi, 

&Jaiswa 
5 

Normalized the intensities 
+ patch wised 
segmentation 

Dice 83% BRATS Theano 2D CNN 2015 Lyksborg et al 6 

N4ITK bias field 
correction 

Accuracy 93% BRATS caffe  CNN 2015 Rewari 7 

 Accuracy 66% BRATS  2D ANN vs CNN 2015 Y. Pan et al 8 

 Dice 78% BRATS Not-Detected 3D 
Triplanar 2D CNN architecture 

for 3D voxel classification 
2015 L. Zhao & Jia 9 

two-pathway architecture Accuracy 81% BRATS Pylearn2 2D CNN 2016 Havaei et al 10 

N4ITK bias field 
correction 

+ 
Small 3*3 kernel 

Dice 78% BRATS Theano 2D CNN 2016 Pereira et al 11 

Bias field correction 
+ 

Intensity normalization 
Dice 79.1% 

MRI Scans 
Radboud 

University 
Nijmegen 

Diffusion tensor 
and Magnetic 

resonance imaging 
Cohort 

[RUN DMC] 

Not-Detected 3D CNN 2016 Ghafoorian et al 12 

Stacked residual modules Dice 89% BRATS 
Matlab and C++ 

based on Caffe library 
3D CNN 2016 Chen et al 13 

a convolutional layer with 
pre-defined Difference- 

of-Gaussian [DoG] filters 
Dice 89% BRATS Not-Detected 3D CNN 2016 Yi et al 14 

fully convolutional 
residual neural network 

[FCR-NN] 
Dice 87% BRaTS Matlab 2D FCN 2016 Peter D Chang 15 

A dual pathway,  
11-layers deep, a 3D 
Fully Convolutional 
Conditional Random 

Field 

Dice 89% BRATS Theano 3D FCN 2016 Kamnitsas 16 

standard normalization 
+ 

two fully convolutional 
3D CNN architectures 

inspired 

Dice 91.74% BRATS Not-Detected 3D FCN 2016 
Casamitjana, Puch, 
Aduriz, Sayrol, & 

Vilaplan 
17 

N4ITK bias correction 
+ 

fully convolutional 
network [FCN] and 
Conditional Random 

Fields [CRFs] in a unified 
framework 

Dice 80% BRATS Caffe 2D FCN 2016 X. Zhao et al 18 

Using pre-trained model 
as vgg-net 

Dice 76% BRATS Not-Detected 2D FCN 2016 Tseng Kuan Lun 19 

N4ITK bias correction Dice 73% BRATS Theano 3D CNN 2016 Balaji Pandian 20 

Use two-stage network 
training 

Dice 87% BRATS Not-Detected 2D CNN 2016 
Ramandeep 
Randhawa 

21 

Standard normalization Dice 89% BRATS Not-Detected 3D CNN 2016 Casamitjana 22 
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This architecture is very suitable for application such as 
segmentation and therefore has been used frequently in brain 
tumor segmentation. The studies with two-dimensional images 
analysis in the literature are more than 3D images ones. 
Considering that magnetic resonance imaging of the brain 
tumor is done in 3D form, 3D analysis of image is preferred 
and emphasized. However, it should be noted that the use of 
deep learning techniques requires a large number of input 
samples, in order to fulfill this requirement, each 3D image was 
converted into dozens of 2D images. Hence, more studies have 
been done to date on two-dimensional images. 
 BRATS as the major dataset used in the studies, is a 
collection of multi-modality brain tumor MR images (T1, T2, 
T1C and Flair) with their ground truth (manual segmented by 
experts) [106]. 
 A variety of parameters can be suggested for evaluating 
segmentation models, and some of them, such as sensitivity, 
specificity, etc., are mentioned in some studies. But according 
to the study, the two parameters Dice and Accuracy are the 
most important parameters for the evaluation of segmentation 
models and have been used in most of studies in the area of 
brain tumor segmentation [38-43]. 
 The parameters are calculated as follows. Dice in 
segmentation evaluation: 

���� =
�∗|	∩�|

|	|�|�|
 Eq. 1 

In the above relation, S is equal to the region segmented by the 
algorithm and G is equal to the reference segmentation region. 
 The Accuracy parameter in the evaluation of segmentation of 
brain tumor images defined as below: 


������� =
�����

���	������
 Eq. 2 

In the above relation, Tp is the number of tumor pixels 
identified by the algorithm correctly as a tumorous pixel, and 
Tn is the number of non-tumor pixels that are correctly 
identified by the algorithm as a non-tumorous pixel. 
 What distinguishes these two parameters, is their power in 
evaluating the performance of segmentation technique, where 
Dice focuses specifically on the tumor area, and the Accuracy 
refers to the overall evaluation of the image. According to the 
study, some studies have selected the latter for assessing their 
technique, while the first has been used in most of the studies. 
 However, using these two parameters (especially Dice) to 
assess a segmentation technique provides the ability to 
compare the technique with other studies. As mentioned above, 
the two parameters are the most commonly used criteria for 
evaluating fragmentation of brain tumor images. 
 On the other hand, Dice, can be considered as an appropriate 
parameter to assess the overlapped areas in the images and can 
be used as a most useful parameters for evaluation of 
segmentation [107]. 

Despite the high interest towards the use of deep learning 
methods in image processing application, some challenges 
exist for using them, like: 

· Need for bulky datasets: 

· This challenge lies in the essence of deep learning, because 
the philosophy of these techniques depends on the 
repetition of the feature extraction process. So the analyzes 
provided by these techniques are generalizable if in the 
next step, the fine tuning applied on pre-trained networks. 
In order to solve this challenge, publicly available data sets 
are being expanded such as BRATS in the case of brain 
tumor segmentation. 

· High computing power required: 

· Like the previous challenge, this need is also based on the 
deep learning paradigm. However, with the advancement 
of technology in the development of faster hardware and 
the use of parallel processing architectures, this challenge 
has been largely overcome. 

 

Conclusion 

Using Dice parameter in future studies can provide a very good 
measurement  for accurate and  in detailed comparison of brain 
tumor segmentation techniques. However, some factors such as 
geography, race and other demographic parameters can affect 
practical use of models but  BRATS dataset can be used in 
future studies.. In such situations using BRATS in initial 
training phase is preferred, then local dataset can be used for 
fine tuning for better results. 
 As mentioned earlier, the main feature of deep learning 
paradigm is independency from engineering processes which 
leads to extract images from raw data in automatic manner. 
However, it should be noted that the use of enhancing tools can 
increase the efficiency of deep learning based methods. As it 
was shown in the study, the use of preprocessing phase such as 
N4ITK for bias correction as well as the conditional random 
field in final processing stage in the CNN learning can enhance 
CNN performance in brain tumor segmentation. On the other 
hand, some strategies in the training of a CNN can increase the 
performance of the CNN, such as the using of pre-trained 
models and the use of multi-stage training. 
 

Future perspective 

Deep learning is a revolutionary idea that has created a new 
paradigm and has gradually shown its success in various image 
processing applications. The complexity of medical images is 
high and making decisions about them requires the use of high-
level knowledge and complex feature engineering processes. In 
such a situation, the use of deep learning techniques will be 
increased due to their ability to automatic feature extraction. 
This will create a cycle of usage and success, and  we hope in 
the future to see the application of the deep learning 
techniques, including the convolutional neural network, in a 
variety of image processing applications. 
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Executive summary 

· Over 250’000 people identified with primary brain tumor in 
the world which is about two percent of all the cancers, 
moreover, one quarter of deaths by cancers are caused by 
metastases to the brain. 

· BRATS as the major dataset used in the brain tumor 
segmentation studies, is a collection of multi-modality brain 
tumor MR images (T1, T2, T1C and Flair) with their ground 
truth (manual segmented by experts). 

· The detection of brain tumors is done usually by imaging. 
MRI is the most useful and common modality to show the 
tumors in the brain MRI scans. 

· The most important step of MR image processing is the 
segmentation of tumors which is used in extraction, 
measurement, visualization and presentation of the tumors. 

· Brain tumor segmentation is a difficult task due to variation 
in tumor tissue characteristics like shape, size, gray level 
intensities and location of tumor in the brain. 

· Surveying the techniques revealed that three generations of 
algorithms used in brain tumor segmentation: heuristic 
methods, probabilistic models and optimization methods and 
finally methods that use the higher levels of knowledge 

which can be inferred from tacit information, rules, and 
models being created by human or patterns extraction. 

· Deep learning is a hierarchical model, designed with the aim 
of mimicking the human brain's learning process and capable 
of learning low-level features and turning them into complex 
data representation in a hierarchical mode. 

· Convolutional neural network as one of the successful 
models of deep learning paradigm has been successful in 
brain tumor segmentation. 

· The dominant CNN architecture in the brain tumor 
segmentation is Fully Convolutional Network [FCN]. In this 
architecture, a combination of convolution, sampling and 
deconvolution are used for segmentation. 

· The analysis of the dimensions of the input images shows 
that the number of studies on two-dimensional images of 
brain scans are larger than 3D images studies. 

· Despite the high interest towards the use of deep learning 
methods in image processing application, some challenges 
faced for using them like: need for bulky datasets and high 
computing power. 
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