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Abstract 
In dynamic cardiac PET FDG studies the assessment of myocardial metabolic rate of glucose (MMRG) requires the 
knowledge of the blood input function (IF). IF can be obtained by manual or automatic blood sampling and cross 
calibrated with PET. These procedures are cumbersome, invasive and generate uncertainties. The IF is contaminated by 
spillover of radioactivity from the adjacent myocardium and this could cause important error in the estimated MMRG. 
In this study, we show that the IF can be extracted from the images in a rat heart study with 18F-fluorodeoxyglucose 
(18F-FDG) by means of Independent Component Analysis (ICA) based on Bayesian theory and Markov Chain Monte 
Carlo (MCMC) sampling method (BICA). Images of the heart from rats were acquired with the Sherbrooke small 
animal PET scanner. A region of interest (ROI) was drawn around the rat image and decomposed into blood and tissue 
using BICA. The Statistical study showed that there is a significant difference (p < 0.05) between MMRG obtained with 
IF extracted by BICA with respect to IF extracted from measured images corrupted with spillover. 
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Introduction 

Positron emission tomography (PET) imaging relies on the 
detection of positron annihilation photons issued by a 
radiotracer concentration in tissue. The labeled molecules with 
positron emitter isotopes allow to dynamically image the 
biochemistry in the body. Parameters of interest such as 
glucose metabolism can be calculated by means of 
pharmacokinetic models. They are crucial to assess the 
viability of a tissue, the follow up of patients, the study of 
drugs, a comparison between groups etc. In order to calculate 
these parameters, the quantity of the radiotracer supplied to the 
tissue needs to be known. It is the concentration of the 
radiotracer in the blood plasma or input function (IF). 
Pharmacokinetic modeling in PET imaging is based on the 
measurement of IF and the time-activity curve (TAC) of the 
target tissue. These two curves are related within a 
mathematical model that describes the biochemical behavior of 
the radioactive tracer in the tissues. IF can be assessed by 
manual or automatic blood sampling [1-3] which is risky, 
invasive, cumbersome and inaccurate. The samples need to be 
analyzed for radiotracer concentration in plasma and cross 
calibrated with the PET scanner. 
 For small animal 18F-FDG PET studies, the blood sampling 
procedure is more difficult and challenging because of the 

small size of blood vessels and the limited blood volume, the 
time delay and dispersion in the tubing, effect of the noise, 
cross-calibration between samples and the PET scanner [2,4]. 
The simplest technique is to extract IF from the images by 
means of region of interest (ROI) drawn on the blood pool in 
the case of cardiac imaging. In small animal imaging, hearts 
and arteries are small compared to the scanner spatial 
resolution. Hence, vascular radioactivity is blurred into 
adjacent tissues and vice versa. Therefore, curves obtained 
from regions drawn over the vascular space are a mixture of 
the IF and the contiguous tissues. Consequently IF is affected 
by spillover and partial volume effect (PVE) [5,6]. Meanwhile 
it is possible to mathematically decompose the measured 
images in images of blood and tissue. Factor analysis (FA) has 
been proposed to extract the input function and the tissue time 
activity curve from the dynamic PET imaging [7-10]. Although 
such factor analysis is considered an attractive tool to process 
dynamic image sequences, additional assumptions of a priori 
knowledge are needed to overcome the non-uniqueness of the 
solution [7]. In recent times, Independent Component Analysis 
(ICA) received great interest in biomedical signals. In PET 
imaging, some works [11-18] have been published reporting 
usage of ICA in image decomposition, image segmentation or 
for seeking of blood sampling from the images. Recently, 
Mabrouk et al [18] used ICA to extract the IF and the 
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myocardium TACs directly from dynamic positron emission 
tomography (PET) images in small animals. The method 
assumes a super-Gaussian distribution model for the blood 
activity, and a sub-Gaussian distribution model for the tissue 
activity. 
 In this work we propose a method based on the Bayesian 
Independent Component Analysis and Markov Chain Monte 
Carlo methods (BICA) to extract IF from the images in a rat 
heart study with 18F-fluorodeoxyglucose (18F-FDG). A 
sequence of PET images is decomposed in a number of desired 
components with BICA to produce the input function in a 
simple and non invasive fashion. The principal advantage of 
this approach is its capability to incorporate non-negative 
constraints in the form of priors for both source signals and 
elements of the mixing matrix, and also it can produce a non 
square mixing matrix and these two characteristics makes this 
approach flexible and effective. 
 This approach was first used and has succeeded to solve the 
problem of non-negative source separation in a Bayesian 
framework for an application to the analysis of mixtures in 
spectroscopy [19]. We used it later in the last work [20]. We 
determine IF from internal artery in fluorodeoxyglucose (FDG) 
brain images by means of BICA and we have showed that 
BICA is a strong approach in FDG brain image decomposition 
to extract blood activity curves in a noninvasive way. 
 

Materials and Methods 

Dynamic PET data model 
In dynamic PET images, each voxel contains two components: 
blood vessels and myocardium tissues. Hence, the radioactivity 
of a voxel is assumed to be a linear combination of the 
radioactivity in the two components [13]. The mixing process 
is then: 

nASX +=  Eq. 1 

Where X(N,F) is a dynamic PET data set consisting of N 
voxels with F time scanned frames, each column of which is 
the scanned image at one time. S(M,F) is an independent 
source image matrix which rows represent the blood volume 
image and the tissue volume image, so, in our case M=2. The 
matrix A(N,M) is combination coefficient matrix in which 
columns stand for the corresponding time-activity curves, for 
example the input blood curve and the output tissue curve, and 
n(N,F) is the noise modeled as Gaussian with zero mean and 
covariance matrix Ω. In the basic model of ICA, X, S and A 
represent respectively the observed signals, source signals 
composing X and an unknown real mixing matrix. 
 

Bayesian approach 
The basic principle of the Bayesian approach to source 
separation is to take into account any information previously 
available on the source signals and mixing coefficients. The 
problem is formulated in a probabilistic framework by 
assigning prior distributions to the different variables. Bayes 

theorem allows describing the probability of the model in terms 
of the likelihood of the data and the prior probability of the 
model and the data. The posterior probability is then given by 
[19]: 
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where the independence between A and S is assumed. As p(X) 
is normalization constant, we can write: 

)()(),|()X|,( APSPASXpASp ∝  Eq. 3 

The first task of the inference is to encode our knowledge on 
the noise sequences, source signals and mixing coefficients by 
appropriate probability distributions. 
 

Noise distribution, priors on source signals and 
mixing coefficients 
The additive noise is assumed independent and identically 
distributed (i.i.d), independent of the source signals, stationary 

and Gaussian with zero mean and variances =nφ  
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where NG is a shorthand for a multivariate Gaussian 
distribution. The likelihood [19] is given by: 
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To take into account the non-negativity, the sources are 
distributed as a Gamma distribution with parameters (αj ,βj) 
which are supposed constant for each source. However, they 
may be different from one source to another. The sources are 
assumed mutually statistically independent. In the same 
manner, each column j of the mixing matrix is also assumed 
distributed as a Gamma distribution with parameters (γj ,λj). The 
advantage of the Gamma distribution is that its shape allows a 
better fit to the time-activity curves of blood and tissue. The 
prior densities on the source signals and the mixing matrix are: 

∏∏
= =

=
M

j

F

k
jjjks sGSp

1 1

),;()|( βαφ  Eq. 6 

∏∏
= =

=
N

i

M

j
jjija aGAp

1 1

),;()|( λγφ  Eq. 7 

Where 
T

MMs ],,,,,[ 11 ββααφ KK= , T
MMa ],,,,,[ 11 λλγγφ KK=  

correspond to the parameters of the Gamma distributions and G 
stands for Gamma distribution. 
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G is given by: 
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Where )(αΓ  is the Gamma function. 

Replacing the set of hyperparameters by { }nas φφφφ ,,= , which 

are the unknown parameters of noise variances and  Gamma 
densities, the Equation 3 becomes [19]: 

)|()|(),,|()X,|,( asn ApSpASXpASp φφφφ ∝  Eq. 9 

As the hyperparameters of the noise variances and the prior 
distributions are unknown (unsupervised learning), they have 
also to be inferred. Then the Equation 9 is expressed as: 

)()|()|(),,|(X)|,,( φφφφφ pApSpASXpASp asn∝  Eq. 10 

This joint posterior density is in general difficult and 
impossible in some cases to compute. In this paper, stochastic 
simulation tools is used to compute this joint posterior density 
by applying  Monte Carlo Markov chain methods. 
 

Simulation and estimation via MCMC methods 
The objective of Monte Carlo Markov chain [21,22] is to 
simulate data distributed according to the joint posterior 
density, and then construct estimators based on these data. 
Sampling the posterior distribution in Equation 10 is achieved 
by using Gibbs algorithm and constructing the estimator from 
the samples of the Markov chain using the marginal posterior 
mean (MPM) estimator [19] as: 

][],[
^^

XAEAXSES ==  et ][
^

XE φφ =  Eq. 11 

The main steps of the algorithm to simulate X)|,,( φASp , at 

each iteration h, are: 

1. Simulating the source Sh+1 from 

)|(),,|(),AX,|( hh hhh SpASXpSp φφφ ∝  Eq. 12 

2. Simulating the mixing coefficients Ah+1 from 
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3. Simulating the hyperparameters of noise 1+h
nφ  from 
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4. Simulating the source hyperparameters 1+h
sφ  from 
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5. Simulating the mixing coefficients hyperparameters 1+h
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The algorithm is iterated several times in order to have hmax 

samples of Sh, Ah and hφ . Estimates of the source signals, the 

mixing coefficients and the hyperparameters are obtained by 
MPM estimator [19] as: 
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where hmin is the number of iterations corresponding to the 
burn-in run of the Markov chain whose related samples are 
discarded. The expressions of the conditional posterior distri-
butions and their simulation techniques are detailed in [19]. 
 

PET measurements 
The measurements were performed with the Sherbrooke small 
animal PET scanner [23]. Normal rats of about 300 g were 
measured for the heart after a nearly 5 mCi bolus injection of  
18F-FDG (7 rats). The temperature and the heart beats were 
continuously under control during the measurements. The rats 
were allowed free access to food and water before the 
measurements. 18F-FDG was measured during 30 min and this 
time slot was decomposed in 25 time frames of, respectively 12 
x 5 seconds; 8 x 30 seconds and 5 x 300 seconds. 
 

PET kinetic modeling 
In order to calculate MMRG from the images, kinetic models 
were used where the time course of a tissue should fit a model. 
Figure 1 and Equations 18-20 summarize the procedure of 
TAC modeling in the case of FDG. The model in Figure 1 is 
translated in differential equations [24] as: 
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Figure 1. Diagram of the three-compartment model for 
18F-FDG illustrating radiotracer in blood (Cp), free 18F-
FDG (Cf) and metabolized 18F-FDG (Cm) compartments, 
the perfusion constant (K1) and the rate constants (k2 - k4). 
The dashed line corresponds to the tissue ROI measured 
with PET (CPET or tissue TAC). 
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The solutions to the differential equations are given by: 
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The PET measurement is described by: 
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Where k5 is a fraction (0 ≤  k5  < 1) of Cp called blood volume 
and α1, α2 are combinations of the time constants as follows: 
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The injected radiotracer is found first in blood (compartment 
Cp in Figure 1), then it crosses the capillaries towards the cells 
(Cf) before being metabolized (Cm). This transfer is governed 
by rate constants K1-k4. The compartment model is then 
translated into equations where Cp represents IF. CPET in 
Equation 20 should fit the measured tissue TAC. Knowing Cp 
and CPET on several time point, the rate constants K1-k4 are 
obtained by nonlinear least squares fitting. The rate constants 
allow to calculate MMRG as: 
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where gl is the concentration of glucose in plasma and LC is 
the lumped constant taken as 1. 
 

Results 

In order to define the time course of the radiotracer 
concentration in blood and tissue, three regions of interest 
(ROI) were drawn. The first one included the whole rat image 
to be decomposed into two images of tissue and blood. The 
second ROI was drawn around the blood chamber to account 
for blood time-activity curve (TAC). The third ROI was drawn 
on myocardium to delimit tissue TAC. 
 Figure 2 shows the rat heart measured with 18F-FDG and 
decomposed with BICA in tissue and blood images. Figure 2 
top-left is the measured image at the last time frame. Figure 2 
top-right is the same image as top-left with the ROIs indicating 
the pixels averaged to produce tissue and blood TACs. 
Figure 2 bottom-left is the image extracted with BICA repre-
senting blood distribution. Figure 2 bottom-right displays the 
tissue component separated from blood component. One can 
notice on tissue image the reduced radioactivity at the ventricle 
chamber which is the site of blood. 
 

  

Figure 2. Decomposition of 18F-FDG  images. Top row: measured 
image and same image with tissue and blood ROIs. Bottom: blood 
(left) and tissue (right) images obtained with BICA. 

 

 

 

 

Figure 3. 18F-FDG time-activity curves of blood (left) and tissue (right) components as calculated with BICA in comparison to ROI on 
measured image (Raw measured). 
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By applying the ROIs on the three sets of dynamic images (raw 
measured, blood and tissue components), we obtain the blood 
and tissue TACs as shown in Figure 3. In these figures, the 
blood and tissue TACs are respectively compared to the TACs 
obtained from the measured images. We observe that the 
method was able to decompose the images as there is nearly no 
blood contribution in tissue TAC and reciprocally, there is 
nearly no tissue contribution in blood TAC. This observation 
can be supported by the fact that the radiotracer injection was a 
bolus and at early time of the TAC, the measured signal was 
almost from the blood component. Furthermore, at later times, 
the radioactivity in blood is low depending on recirculation 
only while the major contribution results from tissue. The ratio 
of integrals of calculated blood TAC with respect to the 
measured blood TAC (Measured-Calculated)/Measured) was 
found 69.63%. In this case, the recovery of intensity was minor 
as the heart was enough large to be subject to PVE. That would 
not be the case for the heart of a mouse which is approximately 
ten times smaller where the pixels are formed by a mixture of 
tissue and blood signals. 
 Knowing the blood TAC without contamination from tissue, 
it is used as IF in Equation 20 together with the measured 
tissue TAC to produce the rate constants. The fit of the model 
to the data is shown in Figure 4. The values of MMRG 
obtained with both methods are reported in Figure 5. We have 
used Wilcoxon signed-rank test to compare MMRG obtained 
with both methods. The results obtained show a significant 
difference (p = 0.0156) between MMRG obtained with BICA 
and ROI. Thus, there is a significant gain of MMRG with IF 
extracted by BICA with respect to IF extracted from measured 
images. 
 

Discussion 

Blood sampling is mandatory in PET kinetic modeling in order 
to calculate the physiological parameters. IF can be determined 
from blood samples which are invasive, hard to obtain 
especially from patients, children and small animals, hard to 
analyse where small amounts of nearly 25 samples have to 
measured with time, centrifugated, plasma extracted, measured 
for radioactivity and cross calibrated with the PET scanner. 
The automatic blood sampling presents the same difficulties 
except the risk of the operator error, and both of them introduce 
uncertainties. The most common method used is to extract IF 
from images by drawing ROIs around blood vessels. However, 
IF is affected by spillover and partial volume effect. To resolve 
the spillover problem, BICA is applied to extract IF from a 
dynamic sequence of PET images. This method first requires 
the selection of a priori suitable for the unknown parameters. 
For the distribution of sources and mixing coefficients we 
considered a model as gamma prior density. The choice of the 
gamma density is justified firstly by the consideration of the 
constraint of non-negativity for the sources and the mixing 
coefficients and on the other by the similarity of this law to 
time-activity curves (TAC) of blood and tissue. Both source 

signals and mixing coefficients were estimated successfully 
without negative values.  BICA has already shown its efficacy 
in brain imaging and in the present study, we demonstrated that 
Bayesian ICA and MCMC sampling succeeded once again in 
decomposing 18F-FDG cardiac images in small animal where 
the resolution is very small (~1 mm) and the PVE is very 
important. BICA can be used at least for imaging with 
radiotracers like 18F-FDG which provides contrasted images 
as a function of measurement time, and producing non 
correlated blood and tissue signals. Since BICA provides blood 
images by decomposing 18F-FDG images, this approach could 
be used to generate blood volume images to locate vasculature 
deficiencies or pathologies. 
 The tissue and blood components are strong components 
(several voxels with correlated time-course intensities) and are 
thus clearly identified. However, other components possibly 
constituting secondary components and noise can be associated 
with the two main components at separate positions. Thus, the 
appearance of some voxels at the contour of the body in lower-
left image of Figure 2. 
 
 

 

Figure 4. Fit of the model to the tissue TAC. 

 

 

Figure 5. The MMRG values obtained with both methods BICA 
and ROI.  
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The extracted IF from blood images was free from time delay, 
dispersion and tissue to blood spillover, makes PET imaging 
less invasive, more precise in the sense that IF and the TACs 
are both in the same units with no extra measurements, easy 
and safe in the experimental procedures for the personnel and 
the patients. The proposed algorithm is flexible, performing 
and does not require preprocessing and spatial whitening of 
observations, the only necessary parameters to provide are the 
number of independent components. The suppression of noise 
is taken into account in the process of separation. 
 

Conclusions 

We applied in this paper a method based on the joint use of 
Bayesian ICA and MCMC sampling to extract IF from small 
animals PET imaging. The results obtained illustrate once 
again the strength and the effectiveness of BICA to decompose 
a sequence of PET images in a number of desired components 
and to produce the input function in a simple and non invasive 
fashion. Finally, the validity of the approach on other 
radiotracers remains to be confirmed. 
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