Krzysztof J. Pałko¹, Andrzej Rogalski¹, Krzysztof Zieliński¹, Jarosław Glapiński¹, Maciej Kozarski¹, Tadeusz Pałko², Marek Darowski¹

RC Model-based Comparison Tests of the Added Compliance Method with Computer Simulations and a Standard Method

¹Institute of Biocybernetics and Biomedical Engineering PAS, Ks. Trojdena 4, 02-109 Warsaw, Poland ²Institute of Precision and Biomedical Engineering, Warsaw University of Technology, A. Boboli 8, Warsaw, Poland e-mail:palkot@mchtr.pw.edu.pl

Ventilation of the lungs involves the exchange of gases during inhalation and exhalation causing the movement of respiratory gases between alveolars and the atmosphere as a result of a pressure drop between alveolars and the atmosphere. During artificial ventilation what is most important is to keep specific mechanical parameters of the lungs such as total compliance of the respiratory system C_p (consisting of the lung and the thorax compliances) and the airway resistance R_p when the patient is ventilated. Therefore, as the main goal of this work and as the first step to use our earlier method of added lung compliance in clinical practice was:

1) to carry out computer simulations to compare the application of this method during different expiratory phases, and

2) to compare this method with the standard method for its accuracy.

The primary tests of the added-compliance method of the main lung parameters measurement have been made using the RC mechanical model of the lungs.

Key words: the added compliance method, the end-inspiratory pause technique, the total compliance of respiratory system, the airway resistance, artificial ventilation.

Introduction

In our novel method of measurements of the main respiratory system parameters these parameters are determined during the expiratory phase of the ventilation. During our tests two variants of this method were used: in the first one – for the initial phase of the expiratory phase of respiration a small size (0.5-2 l of volume) extra-added compliance (pneumatic capacitance) and in the second one – for the end of the expiratory phase of the respiration a big size (25; 50 l of volume) of the extra-added compliance were considered. The fundamentals of the methodology applied were described in earlier publications [1-3].

The main parameters (C_p, R_p) of the respiratory system were determined. The values of the pressure p_p at the expiratory phase beginning and the pressure $p_{\infty} = p_p - \Delta p$

Figure 1. The idea of the presented measurement method: a) the electrical analogue of the measurement system: p, q – respiratory pressure and flow, GV, AV and EV – generator, added compliance and expiratory valves, C_p – total compliance of the respiratory system model, R_p – airway resistance, C_m – added compliance; b) pressure-time p(t) and flow-time q(t) courses in the lung model during the experiments:, PEEP – positive end-expiratory pressure, τ_1 – time of the end-inspiratory pause, τ_2 – time of the expiration initial stage, τ_{RCp} – time constant obtained from the pressure-time course, T_E – expiration time, T_o , T_e – times of the initial stage and termination of the measurement, respectively.

corresponding to the steady state (Fig. 1) were measured to determine the total respiratory system compliance C_p according to the following formula:

$$C_{p} = C_{m} \cdot \frac{p_{\infty}}{\Delta p} \tag{1}$$

where: C_p , C_m – the added compliance are expressed in ml/kPa or l/cm H₂O, p_{∞} , p_p and Δp (the pressure drop at the beginning of the expiratory phase) in kPa or cm H₂O.

To determine the airway resistance R_p (by measuring the time constant τ_{RCq}), the expiratory flow-time course was analysed Fig. 1) [3].

$$R_p = \frac{\tau_{RCq}}{C_p} \tag{2}$$

where: R_p is the airway resistance [kPa·s/l or cm H₂O·s/l], and τ_{RCq} is the time constant estimated from the flow-time course q(t).

Methods

The first type of the method tested

The respiratory gas under a pressure of p_i (Fig. 2), obtained from a pressure source and supplied to the respirator, flows to the lungs through the generator valve GV until the lungs become filled up. After this process the added compliance valve AV opens and the respiratory gas under a pressure of p_a moves to the extra-added compliance C_m .

At this time, the earlier discussed pressure drop Δp is measured and calculated to determine total compliance of the respiratory system C_p . The measurement time is very short (about 200 ms). Than, the expiratory valve EV is opened and the flow course (*q*) is registered to calculate the time constant needed to determine the airway resistance R_p .

The above respirator was made up of: the pressure regulator, the generator (inspiratory) value GV, the added compliance value AV connected to the added compliance C_m (the pneumatic capacitance) of the pneumatic circuit of the respirator, and the expiratory value EV, the pressure sensor, and the pressure drop Δp_q -voltage converter with the Fleisch head playing a role of the flow sensor. The pressure drop Δp_q is between two pressure values: the pressure of the end-expiratory phase p_f and the atmospheric pressure p_{atm} .

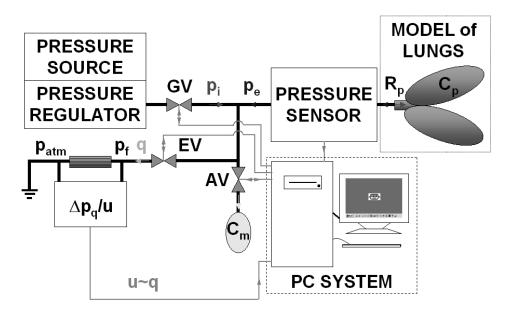
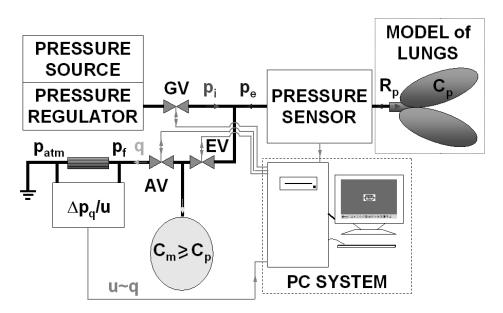
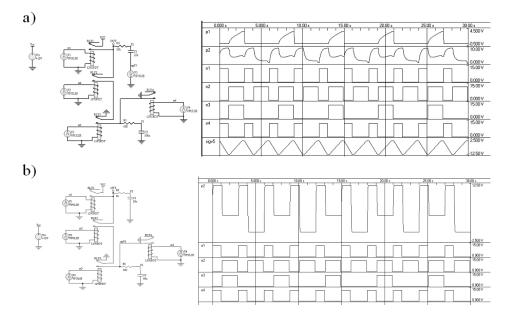


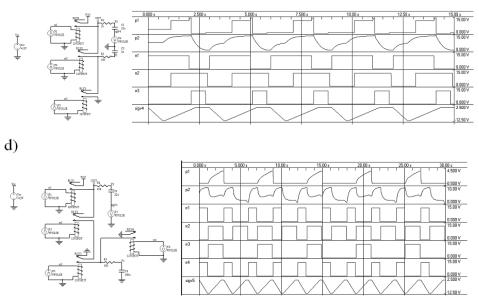
Figure 2. A set-up of the first type of the method tested.




Figure 3. A set-up of the second type of the method tested.

The second type of the method tested

The second type of the method tested is presented in Fig. 3. In this case, the lungs are filled with a mixture of gases supplied from the respirator to the extra-added compliance C_m through the expiratory valve VE of the respirator and the external added compliance valve VA, which connects the extra-added compliance C_m with the respirator. During this time the pressure drop is calculated to determine the total lung compliance C_p . The measurement time is longer than that in the first type of the method (about 600 ms). At the end of this expiratory phase the flow course is registered to calculate the time constant needed to determine the airway resistance R_p .


Computer simulation

As its first aim our work involved comparison tests of the added compliance method with the computer simulations during different expiratory phases. Results were obtained using computer SPICE simulations of two types of the method tested with and without spontaneous breath in the Protel 99SE software (Fig. 4).

Figure 4. a) Computer simulation of the 1_{st} type of the method tested during artificial ventilation, b) Computer simulation of the 2_{nd} type of the method tested during artificial ventilation

Figure 4. c) Computer simulation of the 1_{st} type of the method tested with spontaneous breath of the patient, d) Computer simulation of the 2_{nd} type of the method tested with spontaneous breath of the patient.

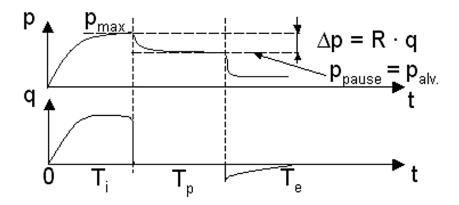


Figure 5. The estimation of the main parameters of the respiratory system from pressure and flow courses of the end-inspiratory pause method.

Standard method

To compare the results of our method with the standard method, the end-inspiratory pause technique was used.

The RC model was connected to the CO_2SMO Plus (Novametrix) to measure the total compliance of the respiratory system and the airway resistance. Figure 5 presents the way of determining these parameters from the pressure and flow courses using the standard method.

Results and Discussion

The compliance of the respiratory system

The results obtained by our method compared with the standard method have shown that the method is satisfactory in evaluating the total compliance of the respiratory system with the acceptable accuracy. There may, however, be a problem involving the estimated compliance of the respiratory system, observed in computer simulations during the active spontaneous breath of the patients that could complicate the measurements, depending on the phase of expiration.

Airway resistance

The time constant τ_{RCp} may easily be found from the pressure curve shown in Fig. 1b. Thus it may be possible to calculate the airway resistance R_p contributing to the time constant τ_{RCp} expressed as

$$\tau_{RCq} = (R_p + R_{AV}) \cdot \left(\frac{C_p \cdot C_m}{C_p + C_m}\right) \approx (R_p + R_{AV}) \cdot C_m; \quad C_m \ll C_p$$
(3)

In reality, the calculation of the airway resistance R_p is very difficult because – resistance R_{AV} of valve AV is much greater than the airway resistance R_p ($R_{AV} > > R_p$), – R_{AV} is mostly nonlinear and variable as a function of both time and flow.

The situation becomes much easier if R_p is calculated from the flow curve (see Fig. 1b). Then the time constant τ_{RCq} is given as

$$\tau_{RCq} \approx (R_p + R_{AV}) \cdot (C_p + C_m) \tag{4}$$

where R_{EV} is the resistance of valve EV, but $R_p > R_{EV}$ and then R_p can be calculated to an acceptable accuracy. We are still working to develop the most efficient method of flow-time courses q(t) analysis so as to calculate the airway resistance R_p .

The new measurement system turned out to be better than the old one [1, 2, 3] because of its relative simplicity, smaller disturbances introduced into the respiratory system and simpler data analysis, especially when lung compliance measurements are concerned. The results of the compliance of the respiratory system in both methods are comparable.

Assessing the results obtained, it is necessary to emphasize that the physical model of the lungs investigated was, from the point of view of the disturbing influence of the thermodynamic process, much more disadvantageous in comparison with natural lungs. In the lungs, the so-called "pneumatic compliance" component undergoing the thermodynamic effect was much smaller (by about 80%) than the "tissue compliance" and was not influenced by thermodynamic effects.

Conclusions

The following conclusions can be drawn:

- 1. The new model-based added compliance method can be useful in estimating mechanical parameters of the lungs for artificially ventilated patients.
- 2. Two different types of the method tested require suitable time for measurements.
- 3. The preliminary results encourage us to do further study in order to apply the method in clinical practice.

Acknowledgement

This work was financed by the State Committee for Science Research (KBN) grant No. 3 T11E 008 28 RC Model-based Comparison Tests...

References

- Darowski M, Jucha A, Kozarski M, Pałko KJ. Analiza krzywej wydechowej dla oceny mechaniki płuc metodą dołączonej podatności. XII Krajowa Konferencja Naukowa Biocybernetyka i Inżynieria Biomedyczna, Warszawa, 2001, tom 1, 252-258.
- [2] Darowski M, Pałko KJ, Jucha A, Kozarski M. Expiratory pressure curve analysis for estimation of lungs mechanics. Biocybernetics and Biomedical Engineering 2003; 23(1): 91-102.
- [3] Kozarski M, Darowski M, Gumiężny R. Metoda ciśnieniowa dołączonej podatności w ocenie parametrów mechanicznych płuc. XI Krajowa Konferencja Naukowa Biocybernetyka i Inżynieria Biomedyczna, Warszawa, 1999, tom 1, 197-202.