Silver nanoparticles deposited on calcium hydrogenphosphate – silver phosphate matrix; biological activity of the composite

Open access


The composite containing nanosilver uniformly deposited on matrix composed of CaHPO4 x 2H2O (brushite, ca 89 mass %), CaHPO4 (monteonite, ca 9.5 mass%), and Ag3PO4 (0.5 mas%) was obtained by addition of calcium nitrate and silver nitrate aqueous solution at 30:1 Ca:Ag molar ratio into excess of (NH4)2PO4 solution at pH 5.0 – 5.5. The isolated solid was characterized by STEM, XRD, and LDI mass spectrometry. It has been found that nanosilver was uniformly distributed within composite as <10 nm diameter sized nanoparticles. Determination of silver by AAS showed that 60% of silver is present as Ag(0) nanoparticles, the present as matrix Ag3PO4 as identified by XRD method. The composite showed strong growth inhibition in E. coli and P. aeruginosa strains, and moderate towards S. aureus. The C. albicans cells were the most resistant to the tested material, although still composite was moderately cytostatic for the yeast.

1. Li, W.R., Xie, X.B., Shi, Q.S., Zeng, H.Y., Ou-Yang, Y.S. & Chen, Y.B. (2010).Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 85, 1115–1122. DOI: 10.1007/s00253-009-2159-5.

2. Lubick, N. (2008). Nanosilver toxicity: ions, nanoparticles — or both? Environ. Sci. Technol. 42, 8617–8617. DOI: 10.1021/es8026314.

3. Leung, B.O., Jalilehvand, F., Mah, V., Parvez, M. & Wu, Q. (2013). Silver(I) Complex Formation with Cysteine, Penicillamine, and Glutathione. Inorg. Chem. 52, 4593–4602. DOI: 10.1021/ic400192c.

4. Aoki, K. & Saenger, W. (1983). Interactions of Biotin with Metal Ions. X-Ray Crystal Structure of the Polymeric Biotin-Silver(I) Nitrate Complex: Metal Bonding to Thioether and Ureido Carbonyl Groups. J. Inorg. Biochem. 19, 269–273. DOI: 10.1016/0162-0134(83)85031-4.

5. Panzner, M.J., Bilinovich, S.M., Youngs, W.J. & Leeper, T.C. (2011). Silver metallation of hen egg white lysozyme: Xray crystal structure and NMR studies. Chem. Commun. 47, 12479–12481. DOI: 10.1039/c1cc15908a.

6. Highly dispersed AgNPs (10 nm diameter sized) are available in isopropyl alcohol, aqueous buffered solutions with sodium citrate stabilizer, or in polyvinylpyrrolidone (PVP) coat from worldwide chemicals distributors.

7. Abou El-Nour, K.M.M., Eftaiha, A., Al-Warthan, A., Ammar, R.A.A. (2010). Synthesis and applications of silver nanoparticles. Arab. J. Chem. 3, 135–140. DOI: 10.1016/j.arabjc.2010.04.008.

8. Mulfinger, L., Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., Boritz, C. (2007). Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 84, 322–325. DOI: 10.1021/ed084p322.

9. Liz-Marźan, L. & Lado-Touriňo, I. (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir. 12, 35853–3589. DOI: 10.1021/la951501e.

10. Radziuk, D., Skirtach, A., Sukhorukov, G., Shchukin, D. & Mohwald, H. (2007).Stabilization of silver nanoparticles by polyelectrolytes and poly(ethylene glycol). Macromol. Rapid Commun. 28, 848–855. DOI: 10.1002/marc.200600895.

11. Malina, D., Sobczak-Kupiec, A., Wzorek, Z. & Kowalski, Z. (2012). Silver nanoparticles with different concentrations of polyvinylpyrrolidone. Dig. J. Nanomat. Biostruct.7, 1527–1534.

12. Huang, H. & Yang, X. (2004). Synthesis of polysaccharidestabilized gold and silver nanoparticles: a green method. Carbohydr. Res. 339, 2627–2631. DOI: 10.1016/j.carres.2004.08.005.

13. Shin, H.S., Yang, H.J., Kim, S.B. & Lee, M.S. (2004). Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in γ-irradiated silver nitrate solution. J. Colloid Interface Sci. 274, 89–94. DOI: 10.1016/j.jcis.2004.02.084

14. Hu, Y., Zhao, T., Zhu, P., Liang, X., Sun, R. & Wong, P.C. (2016). Tailoring size and coverage density of silver nanoparticles on monodispersed polymer spheres as highly sensitive SERS substrates. Chem. Asian J. 11, 2428–2435. DOI: 10.1002/asia.201600821.

15. Supraja, N., Prasad, N.T.N.V.K.V. & David, E. (2016). Synthesis, characterization and antimicrobial activity of the micro/nano structured biogenic silver doped calcium phosphate. Appl. Nanosci. 6, 31–41. DOI: 10.1007/s13204-015-0409-7.

16. Range, S., Hagmeyer, D., Rotan, O., Sokolova, V., Verheyen, J., Siebers, B. & Epple, M. (2015). A continuous method to prepare poorly crystalline silver-doped calcium phosphate ceramic with antibacterial properties. RSC Adv. 5, 43172. DOI: 10.1039/C5RA00401B.

17. Shin, Y.S., Park, M., Kim, H.K., Jin, F.L. & Park, S.J. (2014). Synthesis of Silver-doped Silica-complex Nanoparticles for Antibacterial Materials. Bull. Korean Chem. Soc. 35, 2979–2984. DOI: 10.5012/bkcs.2014.35.10.2979.

18. Muniz-Miranda, M. (2003). Silver-doped silica colloidal nanoparticles. Characterization and optical measurements. Colloids Surf. A Physicochem. Eng. Asp. 217, 185–189. DOI: 10.1016/S0927-7757(02)00575-7.

19. Muzamil, M., Khalid, N., Aziz, M.D. & Abbas, S.A. (2014). Synthesis of silver nanoparticles by silver salt reduction and its characterization. IOP Conf. Ser: Mater Sci. Eng. 60, 1–8. DOI: 10.1088/1757-899X/60/1/012034.

20. Pastoriza-Santos, I. & Liz-Marźan, L.M. (1999). Formation and stabilization of silver nanoparticles through reduction by N,N-dimethylformamide. Langmuir. 15, 948–951. DOI: 10.1021/la980984u.

21. Bykkam, S., Ahmadipour, M., Narisngam, S., Kalagadda, V.R. & Chidurala, S.C. (2015). Extensive studies on X-ray diffraction of green synthesized silver nanoparticles. Adv. Nanopart. 4, 1–10. DOI: 10.4236/anp.2015.41001.

22. Socol, G., Socol, M., Sima, L., Petrescu, S., Enulescu, M., Sima, F., Miroiu, M., Popescu-Pelin, G., Stefan, N., Critescu, R., Mihailescu, C.N., Stanulescu, A., Sutan, C. & Mihailescu, I.N. (2012) Combinatorial pulsed laser deposition of Ag-containing calcium phosphate coatings. Dig. J. Nanomat. Biostruct. 7, 563–576.

23. Rau, J., Fosca, M., Graziani, V., Egorov, A.A., Zobkov, Y.V., Fedotov, A.Y., Ortenzi, M., Caminiti, R., Baranchikov, A. & Komlev, V.S. (2016). Silver-doped calcium phosphate bone cements with antibacterial properties. J. Funct. Biomater. 7, 10; DOI: 10.3390/jfb7020010.

25. Iconaru, L.S., Chapon, P., LeCoustumer, P. & Predoi, D. (2014). Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method. Scientific World J. 11, 165351. DOI: 10.1155/2014/165351.

26. Hardness of ZrO2 (zirconia) is considerably higher (1200 kg/mm2 or 11.8 GPa [26a] in comparison with calcium phosphates (2.7–4.9 GPa);

26a; a: Grave, O.A. (2008). in Chapter 10, pp 169-193. Ceramic and glass materials. Structures, properties and processing. James F. Shackelford and Robert H. Doremus Eds. Springer Science+ Business Media, LLC. DOI: 10.1007/978-0-387-73362-3.

26b: Slósarczyk, A. & Białoskórski, J. (1998). Hardness and fracture toughness of dense calcium–phosphate-based materials. J. Mat. Sci.: Materials in Medicine. 9, 103–108.

27. Sekuła, J., Nizioł, J., Rode, W. & Ruman, T.S. (2015). Gold nanoparticle-enhanced target (AuNPET) as universal solution for laser desorption/ionization mass spectrometry analysis and imaging of low molecular weight compounds. Anal. Chim. Acta. 875, 61–72. DOI: 10.1016/j.aca.2015.01.046.

28. Chow, L.C. & Eanes, E.D (2001).Solubility of Calcium Phosphates. in Octacalcium Phosphate. Monogr. Oral Sci. 13, 94–111. DOI: 10.1159/isbn.978-3-318-00704-6.

29. Nizioł, J., Zieliński, Z., Rode, W. & Ruman, T. (2013). Matrix-free laser desorption-ionization with silver nanoparticle enhanced steel targets, Int. J. Mass Spectrom. 335, 22–32. DOI: 10.1016/j.ijms.2012.10.009.

30. Jarvis, W.R. & Martone, W.J. (1992). Predominant pathogens in hospital infections. J. Antimicrob. Chemother. 29, 19–24. DOI: 10.1093/jac/29.suppl_A.19.

31. Zhang, X., Gang, X., Wang, Y., Zhao, Y., Su, H. & Tan, T. (2017). Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications. Carbohydr. Polymer. 169, 101–107. DOI: 10.1016/j.carbpol.2017.03.073.

32. Vila, L., Marcos, R. & Hernández, A. (2017). Long-term effects of silver nanoparticles in Caco-2 cells. Nanotoxicol. 11, 771–780. DOI: 10.1080/17435390.2017.1355997.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 104 104 36
PDF Downloads 107 107 36