Hydrophilic films based on starch and carboxymethyl starch

Open access


The hydrophilic films based on starch and carboxymethyl starch (CMS) were obtained using cast method. The effect of CMS content on the physicochemical properties of prepared films were evaluated. With increasing content of starch derivative the moisture absorption, solubility in water as well as swelling ratio increased. The highest values of mechanical parameters (tensile strength and Young’s modulus) were determined for the starch/CMS film containing the lowest CMS amount, i.e. 10 wt.% (1.1 MPa, 15 MPa, respectively). For the same system the lowest moisture absorption, solubility in water as well as swelling ratio were reported. Thus, it could be concluded that for this system the highest crosslinking density has been achieved, what was confirmed by DMTA results. Such a film could potentially find application in food or agricultural industry.

1. Wilpiszewska, K. & Spychaj, T. (2006). Heat plasticization of starch by extrusion in the presence of plasticizers. Polimery 51, 325–404. DOI: not given.

2. Suriyatem, R., Auras, R.A., Rachtanapun, C. & Rachtanapun, P. (2018). Biodegradable rice starch/carboxymethyl chitosan films with added propolis extract for potential use as active food packaging. Polymers 10, 954. DOI: 10.3390/polym10090954.

3. Wahyuningtyas, D. & Dinata, A. (2018). Combination of carboxymethyl cellulose (CMC) – corn starch edible film and glycerol plasticizer as a delivery system of diclofenac. AIP Conf. Proc. 1977, 030032. DOI: 10.1063/1.5042952.

4. Ghanbarzadeh, B., Almasi, H. & Entezami, A.A. (2011). Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Ind. Crop. Prod. 33, 229–235. DOI: 10.1016/j.indcrop.2010.10.10.016.

5. Suriyatem, R., Auras, R.A. & Rachtanapun, P. (2018). Improvement of mechanical properties and thermal stability of biodegradable rice starch-based films blended with carboxymethyl chitosan. Ind. Crop. Prod. 122, 37–48. DOI: 10.1016/j.indcrop.2018.05.047.

6. Yanli, W., Wenyuan, G. & Xia, L. (2009). Carboxymethyl Chinese yam starch: Synthesis, characterization, and influence of reaction parameters. Carbohyd. Res. 344, 1764–1769. DOI: 10.1016/j.carres.2009.06.014.

7. Noor Fadzlina, Z.A., Karim, A.A. & Teng, T.T. (2005). Physicochemical properties of carboxy-methylated sago (metroxylon sagu) starch. J. Food Sci. 70, 560–567. DOI: 10.1111/j.1365-2005.tb08305.x.

8. Wilpiszewska, K., Antosik, A.K. & Spychaj, T. (2015). Novel hydrophilic carboxymethyl starch/montmorillonite nanocomposite films. Carbohyd. Polym. 128, 85–89. DOI: 10.1016/j.carbpol.2015.04.023.

9. Antosik, A.K., Wilpiszewska, K. & Czech, Z. (2017). Carboxymethylated polysaccharide-based films as carriers for acrylic pressure-sensitive adhesives. Int. J. Adhes. Adhes. 73, 75–79. DOI: 10.1016/j.ijadhadh.2016.11.011.

10. Kessel, H. (1985). Determination of the functional group and the degree of substitution of carboxymethyl starch. Starch 37, 334–336. DOI: 10.1002/star.19850371005.

11. Reddy, N. & Yang, Y. (2010). Citric acid cross-linking of starch films. Food Chem. 118, 702–711. DOI: 10.1016/j.foodchem.2009.05.050.

12. Almasi, H., Ghanbarzadeh, B. & Entezami, A.A. (2010). Physicochemical properties of starch–CMC–nanoclay biodegradable films. Int. J. Biol. Macromol. 46, 1–5. DOI: 10.1016/j.ijbiomac.2009.10.001

13. Angles, M.N. & Dufresne, A. (2000). Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromol. 33, 8344–8353. DOI: 10.1021/ma0008701.

14. Jiang, Q., Gao, W., Li, X., Liu, Z., Huang, L. & Xiao, P. (2011). Synthesis and properties of carboxymethyl Pueraria thomsonii Benth. starch. Starch 63, 692–699. DOI: 10.1002/star.201100047.

15. Spychaj, T., Zdanowicz, M., Kujawa, J. & Schmidt, B. (2013). Carboxymethyl starch with high degree of substitution: synthesis, properties and application. Polimery 58, 501–509. DOI: 10.14314/polimery.2013.503.

16. Spychaj, T., Wilpiszewska, K. & Zdanowicz, M. (2013). Medium and high substituted carboxymethyl starch: Synthesis, characterization and application. Starch 65, 22–33. DOI: 10.1002/star.201200159.

17. Putri, D.A., Setiawan, A. & Anggraini, P.D. (2016). Effect of carboxymethyl cellulose (CMC) as biopolymers to edible film sorghum starch hydrophobicity characteristics. AIP Conf. Proc. 1818, 020044. DOI: 10.1063/1.4976908.

18. Azevedo, V.M., Dias, M.V, Borges, S.V., Costa, A.L.R., Silva, E.K., Medeiros, É.A.A. & Soares, N.F.F. (2015). Development of whey protein isolate bio-nanocomposites: Effect of montmorillonite and citric acid on structural, thermal, morphological and mechanical properties. Food Hydrocolloid. 48, 179–188. DOI: 10.1016/j.foodhyd.2015.02.014.

19. Rachtanapun, P. (2009). Blended films of carboxymethyl cellulose from papaya peel (CMCp) and corn starch. Agr. Nat. Resour. (formerly Kasetsart J. – Nat. Sci.) 43, 259–266. DOI: not given.

20. Menzel, C., Olsson, E., Plivelic, T., Andersson, R., Johansson, C., Kuktaite, R., Järnström, L. & Koch, K. (2013). Carbohyd. Polym. 96, 270–276. DOI: 10.1016/j.carbpol.2013.03.044.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 133 133 50
PDF Downloads 115 115 44