Removal of Hexavalent Chromium from Aqueous Solution by the Pod of Acacia gerrardii

Open access

Abstract

This study aims at investigating the potential of Acacia gerrardii pod for the removal of Cr(VI) in batch system. Effect of solution pH, biosorbent dosage, initial concentration of Cr(VI), contact time on the removal process was examined. Complete removal of hexavalent chromium was achieved at pH values 1.0 and 2.0 whereas maximum removal of total chromium was obtained at pH of 3.0. The study showed that the biosorption and bioreduction mechanisms were involved in the removal process. The time required for complete removal of Cr(VI) using the pod of Acacia gerrardii was shortened with an increase in biomaterial dosage and decrease in Cr(VI) concentration. Kinetic data was well described using Park kinetic model. Freundlich isotherm model adequately fitted the equilibrium data indication multilayer adsorption of total chromium on the surface of biomaterial. The pod of Acacia gerrardii could be used efficiently for the removal of hexavalent chromium from aqueous solutions.

1. Murugavelh, S. & Mohanty, K.K. (2012). Bioreduction of hexavalent chromium by free cells and cell free extracts of Halomonas sp. Chem. Eng. J. 203, 415–422. DOI: 10.1016/j.cej.2012.07.069.

2. Han, X., Wong, Y.S., Wong, M.H. & Tam, N.F.Y. (2007). Biosorption and bioreduction of Cr(VI) by a microalgal isolate, Chlorella miniata. J. Hazard. Mater. 146 (1–2), 65–72. DOI: 10.1016/j.jhazmat.2006.11.053.

3. Saha, B. & Orvig, C. (2010). Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord. Chem. Rev. 254 (23–24), 2959–2972. DOI: 10.1016/j.ccr.2010.06.005.

4. Ye, J., Yin, J., Mai, B., Peng, H., Qin, H., He, B. & Zhang, N. (2010). Biosorption of chromium from aqueous solution and electroplating wastewater using mixture of Candida lipolytica and dewatered sewage sludge. Bioresour. Technol. 101 (11), 3893–3902. DOI: 10.1016/j.biortech.2010.01.014.

5. Kavita, B., Limbachia, J. & Keharia, H. (2011). Hexavalent chromium sorption by biomass of chromium tolerant Pythium sp. J. Basic Microbiol. 51, 173–182. DOI: 10.1002/jobm.201000191.

6. Vieira, R.S., Meneghetti, E., Baroni, P., Guibal, E., Cruz, V.M.G., Caballero, A., Rodríguez-Castellón, E. & Beppu, M.M. (2014). Chromium removal on chitosan-based sorbents – An EXAFS/XANES investigation of mechanism, Mater. Chem. Phys. 146, 412–417. DOI:10.1016/j.matchemphys.2014.03.046.

7. Hackbarth, F.V., Maass, D., Souza, A. A.U., Vilar, V.J.P. Selene, M.A. & Souza, G.U. (2016). Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor. Chem. Eng. J. 290, 477–489. DOI: 10.1016/j.cej.2016.01.070.

8. Memon, J.R., Memon, S.Q., Bhanger, M.I., El-Turki A., Hallam, K.R. & Allen, G.C.(2009). Banana peel: A green and economical sorbent for the selective removal of Cr(VI) from industrial wastewater, Colloids Surf., B: Biointerfaces. 70 (2), 232–237. DOI:10.1016/j.colsurfb.2008.12.032.

9. Sfaksi, Z., Azzouz, N. & Abdelwahab, A. (2014). Removal of Cr(VI) from water by cork waste, Arab. J. Chem. 7 (1), 37–42. DOI:10.1016/j.arabjc.2013.05.031.

10. Volesky, B., & Holan, Z.R. (1995). Biosorption of heavy metals. Biotechnol. Progr. 11(3), 235–250. DOI: 10.1021/bp00033a001.

11. Kushwaha, S., Sreedhar, B. & Sudhakar, P.P. (2012). A spectroscopic study for understanding the speciation of Cr on palm shell based adsorbents and their application for the remediation of chrome plating effluents, Bioresour. Technol. 116, 15–23. DOI: 10.1016/j.biortech.2012.04.009.

12. Souza, F.B., Brandão, H.L., HackBarth, F.V., Souza, A.A.U., Boaventura, R.A.R., Selene, M.A., Souza, G.U. & Vilar, V.J.P. (2016). Marine macro-alga Sargassum cymosum as electron donor for hexavalent chromium reduction to trivalent state in aqueous solutions. Chem. Eng. J. 283, 903–910. DOI: 10.1016/j.cej.2015.08.038.

13. Kuppusamy, S., Thavamani, P., Megharaj, M., Venkateswarlu, K. Lee, Y.B. & Naidu R. (2016). Oak (Quercus robur) Acorn Peel as a Low-Cost Adsorbent for Hexavalent Chromium Removal from Aquatic Ecosystems and Industrial Effluents. Water, Air, Soil Pollut. 227, 62. DOI: 10.1007/s11270-016-2760-z.

14. Netzahuatl-Muñoz, A. R., Morales-Barrera, L., Cristiani-Urbina, M.d.C. & Cristiani-Urbina, E. (2012). Hexavalent chromium reduction and chromium biosorption by Prunus serotina bark. Fresenius Environ. Bull. 21, 1793–1801.

15. Chakravarty, R., Khan, M.M.R., Das, A.R. & Guha, A.K. (2013). Biosorptive removal of chromium by husk of Lathyrus sativus: evaluation of the binding mechanism, kinetic and equilibrium study. Eng. Life Sci. 13, 312–22. DOI: 10.1002/elsc.201200044.

16. López-García, M., Lodeiro, P., Herrero, R., Barriada, J.L., Rey-Castro, C., David, C. & Sastre de Vicente, M.E. (2013). Experimental evidences for a new model in the description of the adsorption-coupled reduction of Cr(VI) by protonated banana skin, Bioresour. Technol. 139, 181–189. DOI: 10.1016/j.biortech.2013.04.044.

17. Gupta, V.K., Pathania, D., Agarwal, S., Sharma, S. (2013). Removal of Cr(VI) onto Ficus carica biosorbent from water. Environ. Sci. Pollut. Res. 20, 2632–2644. DOI: 10.1007/s11356-012-1176-6.

18. Doke, K.M., Yusufi, M. Joseph, R.D. & Khan, E.M. (2012). Biosorption of hexavalent chromium onto wood apple shell: equilibrium, kinetic and thermodynamic studies. Desalin. Water Treat. 50, 170–179. DOI: 10.1080/19443994.2012.708565.

19. Ponou, J., Kim, J., Wang, L.P., Dodbiba, G. & Fujita, T. (2011). Sorption of Cr(VI) anions in aqueous solution using carbonized or dried pineapple leaves. Chem. Eng. J. 172, 906–913. DOI: 10.1016/j.cej.2011.06.081.

20. Park, D., Yun, Y. S. & Park, J. M. (2005). Studies on hexavalent chromium biosorption by chemically treated biomass of Ecklonics sp. Chemosphere. 60, 1356–1364. DOI: 10.1016/j.chemosphere.2005.02.020.

21. Ahmed, M., Khirstova, P. & Icho, G., (2005). Comparative study of tannins of Acacia spp an indigenous tanning material in Sudan with Acacia mearnsii. Suranaree J. Sci. Technol. 12(4), 259–265.

22. Ramakul, P., Yanachawakul, Y., Leepipatpiboon, N. &Sunsandee, N., (2012). Biosorption of palladium(II) and platinum (IV) from aqueous solution using tannin from Indian almond (Terminalia catappa L.) leaf biomass: Kinetic and equilibrium studies. Chem. Eng. J. 193, 102–111. DOI: 10.1016/j.cej.2012.04.035.

23. Clesceri, L.S., Greenberg, A.E. & Eaton, A.D. (1998). Standard Methods for the Examination of Water and Wastewater (20th ed.). Washington, DC., USA: American Public Health Association, American Water Work Association and Water Environment Federation.

24. Albadarin, A.B., Glocheux, Y., Ahmad, M.N.M., Walker, G.M. & Mangwand, C. (2014). Novel comparison of kinetic models for the adsorption-coupled reduction of Cr(VI) using untreated date pit biomaterial. Ecol. Eng. 70, 200–205. DOI: 10.1016/j.ecoleng.2014.05.002.

25. Kotas, J. & Stasicka, Z. (2000). Chromium occurrence in the environment and methods of its speciation, Environ. Pollut. 107, 263–283. DOI: 10.1016/S0269-7491(99)00168-2.

26. Park, D., Lim, S.R., Yun, Y.S., Yun, Y.S. & Park, J.M. (2007). Reliable evidences that the removal mechanism of hexavalent chromium by natural biomaterials is adsorptioncoupled reduction. Chemosphere, 70 (2), 298–305. DOI: 10.1016/j.chemosphere.2007.06.007.

27. Park, D., Lim, S.R., Yun, Y.S. & Park, J.M. (2008). Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresour. Technol. 99, 8810–8818. DOI: 10.1016/j.biortech.2008.04.042.

28. Park, D, Lee, D.S. & Park, J.M. (2011). Consideration of the methods for evaluating the Cr(VI)-removing capacity of biomaterial. Korean J. Chem. Eng. 28(3), 831–836. DOI: 10.1007/s11814-010-0453-7.

29. Dittert, I.M., Brandão, H.L., Pina, F., Silva, E.A.B., Souza, S.M.A.G., Souza, A.A., Botelho, C.M.S., Boaventura, R.A.R. & Vilar, V.J.P. (2014). Integrated reduction/oxidation reactions and sorption processes for Cr(VI) removal from aqueous solutions using Laminaria digitata macro-algae. Chem. Eng. J. 237, 443–454. DOI: 10.1016/j.cej.2013.10.051.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 146 146 54
PDF Downloads 129 129 38