Adsorption of Congo Red from Aqueous Solutions by Porous Soybean Curd Xerogels

Open access

Abstract

Soybean curd is a very popular food containing high-quality protein, polyunsaturated fats, vitamins, minerals and other nutrients. This study aims to prepare porous soybean curd xerogels via a vacuum freeze drying method and uses them as adsorbents to remove congo red from aqueous solutions. The morphology and functional groups of the soybean curd xerogels were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The adsorption properties of congo red onto the soybean curd xerogels were carried out through investigating the infl uencing experimental parameters such as the drying method, solution pH, adsorbent dose, contact time and temperature. The results showed that the adsorption isotherm data were fitted well to the Freundlich isotherm. Adsorption kinetics of congo red onto the soybean curd followed the pseudo-second-order kinetic model. The thermodynamic parameters, such as ΔG0, ΔH0 and ΔS0, were also determined.

1. Parida, K.M ., Sahu, S., Reddy, K.H. & Sahoo, P.C. (2011). A Kinetic, Thermodynamic, and Mechanistic Approach toward Adsorption of Methylene Blue over Water-Washed Manganese Nodule Leached Residues. Ind. Eng. Chem. Res. 50, 843-848.DOI: 10.1021/ie101866a.

2. Munagapati, V.S. & Kim, D.S. (2017). Equilibrium isotherms, kinetics, and thermodynamics studies for congo red adsorption using calcium alginate beads impregnated with nano-goethite. Ecotox Environ Safe. 141, 226-234. DOI: 10.1016/j.ecoenv.2017.03.036.

3. Du, Q.J., S un, J.K., Li, Y.H., Yang, X.X., Wang, X.H., Wang, Z.H. & Xia, L.H. (2014). Highly enhanced adsorption of congo red onto graphene oxide/chitosan fi bers by wet-chemical etching off silica nanoparticles. Chem. Eng. J. 245, 99-106.DOI: 10.1016/j.cej.2014.02.006.

4. Chong, M.N. , Jin, B., Chow, C.W.K. & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: A review. Water Res. 44, 2997-3027. DOI: 10.1016/j. watres.2010.02.039.

5. Saitoh, T., Yamaguchi, M. & Hiraide, M. (2011). Surfactant- coated aluminum hydroxide for the rapid removal and biodegradation of hydrophobic organic pollutants in water. Water Res. 45, 1879-1889. DOI: 10.1016/j.watres.2010.12.009.

6. Chen, L., M oon, J.H., Ma, X.X., Zhang, L., Chen, Q., Chen, L.N., Peng, R.Q., Si, P.C., Feng, J.K., Li, Y.H., Lou, J. & Ci, L.J. (2018). High performance graphene oxide nanofi ltration membrane prepared by electrospraying for wastewater purifi cation.Carbon. 130, 487-494. DOI: 10.1016/j.carbon.2018.01.062.

7. Apul, O.G. & Karanfi l, T. (2015). Adsorption of synthetic organic contaminants by carbon nanotubes: A critical review. Water Research. 68, 34-55. DOI: 10.1016/j.watres.2014.09.032.

8. Zhuang, Y., Yu, F., Chen, J.H. & Ma, J. (2016). Batch and column adsorption of methylene blue by graphene/alginate nanocomposite: Comparison of single-network and double--network hydrogels. J. Environ. Chem. Eng. 4, 147-156. DOI: 10.1016/j.jece.2015.11.014.

9. Chowdhury, S. & Balasubramanian, R. (2014). Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater. Adv. Colloid Interfac. 204, 35-56. DOI: 10.1016/j.cis.2013.12.005.

10. Yu, M., Li , J. & Wang, L.J. (2017). KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption. Chem. Eng. J. 310, 300-306. DOI: 10.1016/j.cej.2016.10.121.

11. Pham, T.D. , Kobayashi, M. & Adachi, Y. (2015). Adsorption characteristics of anionic azo dye onto large alpha--alumina beads. Colloid Polym. Sci. 293, 1877-1886. DOI: 10.1007/s00396-015-3576-x.

12. Han, H.K., Wei, W., Jiang, Z.F., Lu, J.W., Zhu, J.J. & Xie, J.M. (2016). Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloid Surface A. 509, 539-549. DOI: 10.1016/j.colsurfa.2016.09.056.

13. Aysan, H., Edebali, S., Ozdemir, C., Karakaya, M.C. & Karakaya, N. (2016). Use of chabazite, a naturally abundant zeolite, for the investigation of the adsorption kinetics and mechanism of methylene blue dye. Micropor Mesopor Mat.235, 78-86. DOI:10.1016/j.micromeso.2016.08.007.

14. Wang, Y.G. , Hu, L.H., Zhang, G.Y., Yan, T., Yan, L.G., Wei, Q. & Du, B. (2017). Removal of Pb(II) and methylene blue from aqueous solution by magnetic hydroxyapatite-immobilized oxidized multi-walled carbon nanotubes. J. Colloid Interf. Sci. 494, 380-388. DOI: 10.1016/j.jcis.2017.01.105.

15. Liu, T.H., Li, Y.H., Du, Q.J., Sun, J.K., Jiao, Y.Q., Yang, G.M., Wang, Z.H., Xia, Y.Z., Zhang, W., Wang, K.L., Zhu, H.W. & Wu, D.H. (2012). Adsorption of methylene blue from aqueous solution by graphene. Colloid Surface B. 90, 197-203.DOI: 10.1016/j.colsurfb.2011.10.019.

16. He, A.L., Lu, R.Z., Wang, Y.Y., Xiang, J., Li, Y.L. & He, D.W. (2017). Adsorption Characteristic of Congo Red Onto Magnetic MgFe2O4 Nanoparticles Prepared via the Solution Combustion and Gel Calcination Process. J. Nanosci. Nanotech. 17, 3967-3974. DOI:10.1166/jnn.2017.13091.

17. Nassar, M. Y., Mohamed, T.Y., Ahmed, I.S. & Samir, I. (2017). MgO nanostructure via a sol-gel combustion synthesis method using different fuels: An effi cient nano-adsorbent for the removal of some anionic textile dyes. J Mol Liq. 225: 730-740. DOI: 10.1016/j.molliq.2016.10.135.

18. Nassar, M. Y., Ali, E.I. & Zakaria, E.S. (2017). Tunable auto-combustion preparation of TiO2 nanostructures as effi cient adsorbents for the removal of an anionic textile dye. Rsc. Adv.7, 8034-8050. DOI: 10.1039/c6ra27924d.

19. Chen, L., Li, Y.H., Du, Q.J., Wang, Z.H., Xia, Y.Z., Yedinak, E., Lou, J. & Ci, L.J. (2017). High performance agar/graphene oxide composite aerogel for methylene blue removal. Carbohyd Polym. 155, 345-353. DOI: 10.1016/j. carbpol.2016.08.047.

20. Yang, X.X. , Li, Y.H., Du, Q.J., Wang, X.H., Hu, S., Chen, L., Wang, Z.H., Xia, Y.Z. & Xia, L.H. (2016). Adsorption of Methylene Blue from Aqueous Solutions by Polyvinyl Alcohol/Graphene Oxide Composites. J. Nanosci. Nanotech.

16, 1775-1782. DOI: 10.1166/jnn.2016.10708. 21. Chen, L., Li, Y.H., Hu, S., Sun, J.K., Du, Q.J., Yang, X.X., Ji, Q., Wang, Z.H., Wang, D.C. & Xia, Y.Z. (2016). Removal of methylene blue from water by cellulose/graphene oxide fi bres. J. Exp. Nanosci. 11, 1156-1170. DOI: 10.1080/17458080.2016.1198499.

22. Li, Y.H., Sun, J.K., Du, Q.J., Zhang, L.H., Yang, X.X., Wu, S.L., Xia, Y.Z., Wang, Z.H., Xia, L.H. & Cao, A.Y. (2014). Mechanical and dye adsorption properties of graphene oxide/ chitosan composite fi bers prepared by wet spinning. Carbohyd Polym. 102, 755-761. DOI:10.1016/j.carbpol.2013.10.094.

23. Li, Y.H., Du, Q.J., Liu, T.H., Qi, Y., Zhang, P., Wang, Z.H. & Xia, Y.Z. (2011). Preparation of activated carbon from Enteromorpha prolifera and its use on cationic red X-GRL removal. Appl Surf Sci. 257, 10621-10627. DOI: 10.1016/j. apsusc.2011.07.060.

24. Rui, X., X ing, G.L., Zhang, Q.Q., Zare, F., Li, W. & Dong, M.S. (2016). Protein bioaccessibility of soymilk and soymilk curd prepared with two Lactobacillus plantarum strains as assessed by in vitro gastrointestinal digestion. Innov Food Sci. Emerg. 38, 155-159. DOI: 10.1016/j.ifset.2016.09.029.

25. Kumar, R., Liu, D. & Zhang, L. (2008). Advances in proteinous biomaterials. J. Biobased Mater. Bio. 2: 1-24. DOI: 10.1166/jbmb.2008.204.

26. Liu, D.G., Tian, H.F., Kumar, R. & Zhang, L.N. (2009). Self-Assembly of Nano Hydroxyapatite or Aragonite Induced by Molecular Recognition to Soy Globulin 7S or 11S. Macromol. Rapid Comm. 30, 1498-1503. DOI: 10.1002/marc.200900265.

27. Liu, D.G., Chen, H.H., Chang, P.R., Wu, Q.L., Li, K.F. & Guan, L.T. (2010). Biomimetic soy protein nanocomposites with calcium carbonate crystalline arrays for use as wood adhesive. Bioresource Technol. 101, 6235-6241. DOI: 10.1016/j. biortech.2010.02.107.

28. Liu, D.G., Li, Z.H., Li, W., Zhong, Z.R., Xu, J.Q., Ren, J.J. & Ma, Z.S. (2013). Adsorption Behavior of Heavy Metal Ions from Aqueous Solution by Soy Protein Hollow Microspheres. Ind. Engin. Chem. Res. 52, 11036-11044. DOI: 10.1021/ie401092f.

29. Lodha, P. & Netravali, A.N. (2005). Thermal and mechanical properties of environment-friendly ‘green’ plastics from stearic acid modified-soy protein isolate. Ind. Crop Prod. 21,49-64. DOI: 10.1016/j.indcrop.2003.12.006.

30. Subirade, M., Kelly, I., Gueguen, J. & Pezolet, M. (1998). Molecular basis of film formation from a soybean protein: comparison between the conformation of glycinin in aqueous solution and in films. Int. J. Biol. Macromol. 23, 241-249. DOI: 10.1016/S0141-8130(98)00052-X.

31. Karnnet, S ., Potiyaraj, P. & Pimpan, V. (2005). Preparation and properties of biodegradable stearic acid-modifi ed gelatin fi lms. Polym Degrad Stabil. 90, 106-110. DOI: 10.1016/j.polymdegradstab.2005.02.016.

32. Schmidt, V ., Giacomelli, C. & Soldi, V. (2005). Thermal stability of fi lms formed by soy protein isolate-sodium dodecyl sulfate. Polym Degrad Stabil. 87, 25-31. DOI: 10.1016/j.polymdegradstab.2004.07.003.

33. Lin, J.X., Zhan, S.L., Fang, M.H., Qian, X.Q. & Yang, H. J. Environ. Manage. 87, 193 (2008).

34. Chen, L., Li, Y., Chen, L., Li, N., Dong, C., Chen, Q., Liu, B., Ai, Q., Si, P. & Feng, J. (2018). A large-area free-standing graphene oxide multilayer membrane with high stability for nanofi ltration applications. Chem. Eng. J. 345, 536-544.DOI: 10.1016/j.cej.2018.03.136.

35. El Qada, E.N., Allen, S.J. & Walker, G.M. (2006). Adsorption of basic dyes onto activated carbon using microcolumns. Ind. Eng. Chem. Res. 45, 6044-6049. DOI: 10.1021/ie060289e.

36. Gupta, V.K ., Jain, R., Siddiqui, M.N., Saleh, T.A., Agarwal, S., Malati, S. & Pathak, D. (2010). Equilibrium and Thermodynamic Studies on the Adsorption of the Dye Rhodamine-B onto Mustard Cake and Activated Carbon. J. Chem. Eng. Data. 55, 5225-5229. DOI: 10.1021/je1007857.

37. Hu, Q.H., Qiao, S.Z., Haghseresht, F., Wilson, M.A. & Lu, G.Q. (2006). Adsorption study for removal of basic red dye using bentonite. Ind. Eng. Chem. Res. 45, 733-738. DOI: 10.1021/ie050889y.

38. Sharma, Y. C., Uma, Sinha, A.S.K. & Upadhyay, S.N. (2010). Characterization and Adsorption Studies of Cocos nucifera L. Activated Carbon for the Removal of Methylene Blue from Aqueous Solutions. J. Chem. Eng. Data. 55, 2662-2667.DOI: 10.1021/je900937f.

39. Into, T., Okada, K., Inoue, N., Yasuda, M. & Shibata, K. (2002). Extracellular ATP regulates cell death of lymphocytes and monocytes induced by membrane-bound lipoproteins of Mycoplasma fermentans and Mycoplasma salivarium. Microbiol. Immunol. 46, 667-675. DOI: 10.1111/j.1348-0421.2002.tb02750.x.

40. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. J. Am. Chem. Soc. 38, 2221-2295.

41. Zenasni, M.A. , Meroufel, B., Merlin, A. & George, B. (2014). Adsorption of Congo Red from Aqueous Solution Using CTAB-Kaolin from Bechar Algeria. J. Surf. Engine.Mater. Adv. Tech. 04(06): 332-341. DOI: 10.4236/jsemat.2014.46037.

42. Song, Z., Chen, L.F., Hu, J.C. & Richards, R. (2009). NiO(111) nanosheets as efficient and recyclable adsorbents for dye pollutant removal from wastewater. Nanotechnology. 20(27).

DOI: Artn 27570710.1088/0957-4484/20/27/275707.

43. Wang, L. & Wang, A.Q. (2007). Adsorption characteristics of Congo Red onto the chitelsan/montmorillonite nanocomposite. J. Hazard. Mater. 147, 979-985. DOI: 10.1016/j.jhazmat.2007.01.145.

44. Bulut, E., Ozacar, M. & Sengil, I.A. (2008). Equilibrium and kinetic data and process design for adsorption of Congo Red onto bentonite. J. Hazard. Mat. 154: 613-622. DOI: 10.1016/j.jhazmat.2007.10.071.

45. Chen, M., Chen, Y. & Diao, G.W. (2010). Adsorption Kinetics and Thermodynamics of Methylene Blue onto p-tert--Butyl-calix[4,6,8]arene-Bonded Silica Gel. J. Chem. Eng. Data. 55, 5109-5116. DOI: 10.1021/je1006696.

46. Freundlich , H. M.F. (1906). Over the adsorption in solution. J. Phys. Chem. 57, 385-471.

47. Karadag, D., Turan, M., Akgul, E., Tok, S. & Faki, A. (2007). Adsorption equilibrium and kinetics of reactive black 5 and reactive red 239 in aqueous solution onto surfactant modified zeolite. J. Chem. Eng. Data. 52, 1615-1620. DOI: 10.1021/je7000057.

48. Duman, O. & Ayranci, E. (2006). Adsorption characteristics of benzaldehyde, sulphanilic acid, and p-phenolsulfonate from water, acid, or base solutions onto activated carbon cloth. Sep. Sci. Technol. 41, 3673-3692. DOI: 10.1080/01496390600915072.

49. Lagergren, S. (1898) About the theory of so called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar. 24, 1-39.

50. Ho, Y.S. & Chiang, C.C. (2001). Sorption studies of acid dye by mixed sorbents. Adsorption. 7, 139-147. DOI: 10.1023/A:1011652224816.

51. Weber, W.J . & Morris, J.C. (1963). Kinetics of Adsorption on Carbon From Solution. J. Sanit. Eng. D iv. 89, 31-60.

52. Hameed, B.H., Din, A.T.M. & Ahmad, A.L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: Kinetics and equilibrium studies. J. Hazard. Mater. 141, 819-825. DOI: 10.1016/j.jhazmat.2006.07.049.

53. Ma, J., Ji a, Y.Z., Jing, Y., Yao, Y. & Sun, J.H. (2012). Kinetics and thermodynamics of methylene blue adsorption by cobalt-hectorite composite. Dyes Pigments. 93, 1441-1446. DOI: 10.1016/j.dyepig.2011.08.010.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 227 227 32
PDF Downloads 150 150 18