Selected Functional Properties of Oxo-Degradable Materials Containing Antimicrobial Substances

Open access

Abstract

Polyethylene oxo-degradable composites containing antibacterial substances in the form of vegetable oils: geranium, clove and eucalyptus as well as a mixture of nanoAg with nanoCu were discussed. Antibacterial fi lm: PE-0, PE- 1A, PE-2B, PE-3C, PE-4D properties were verifi ed according to ISO 22196:2011 “Measurement of antibacterial activity on plastic and other non-porous surfaces” for the two standard bacteria species of E. coli and S. aureus, whereas water vapour permeability tests (Pv) were carried out acc. ISO 15106-2007 “Plastics. Foils and plates. Determination of water vapor transmission rate. Part 1: Humidity sensor method”. Film marked PE-4D showed the best antibacterial features and good barrier properties.

1. Khajehpour-Tadavani, S., Nejabat, G.R. & Mortazavi, S.M.M. (2018). Oxo-biodegradability of high-density polyethylene fi lms containing limited amount of isotactic polypropylene.J. Appl. Polym. Sci. DOI: 10.1002/app.45843.

2. Olewnik-Kruszkowska, E. Koter, I., Skopińska-Wiśniewska, J. & Richert, J, (2015). Degradation of polylactide composites under UV irradiation at 254 nm. J. Photochem. Photobiol.A: Chem. 311, 144-53. DOI: 10.1016/j.jphotochem.2015.06.029.

3. Olewnik, E., Garman, K., Piechota, G. & Czerwiński, W. (2012). Thermal properties of nanocomposites based on polyethylene and n-heptaquinolinum modifi ed montmorillonite. J. Therm. Anal. Calorim. 110, 479-484. DOI: 10.1007/s10973-012-2380-9.

4. Shogren, R. (1997). Water vapor permeability of biodegradable polymers. J. Environ. Polym. Degrad. 2, 91-95. DOI: 10.1007/BF02763592.

5. Langer, E., Waśkiewicz, S., Lenartowicz-Klik, M. & Bortel, K. (2015). Application of waste poly(ethylene terephthalate) in the syn-thesis of new oligomeric plasticizers. Polym. Degrad. Stabil. 119, 105-112. DOI: 10.1007/s13726-016-0502-0.

6. Mekonnen, T., Mussone, P., Khalil, H. & Bressler, D. (2013). Progress in bio-based plastics and plasticizing modifi cations. J. Mater. Chem. A 1, 13379-13398. DOI: 10.1039/c3ta12555f.

7. Waśkiewicz, S., Zenkner, K., Langer, E., Lenartowicz, M. & Gajlewicz, I. (2013). Organic coatings based on new Schiff base epoxy resins. Prog. Org. Coat. 76, 1040-1045. DOI: 10.1016/j.porgcoat.2013.02.017.

8. Olewnik, E., Garman, K. & Czerwiński, W. (2010). Thermal properties of new composites based on nanoclay, polyethylene and polypropylene. J. Therm. Anal. Calorim. 101, 323-329. DOI: 10.1007/s10973-010-0690-3.

9. Dehghani, S., ValiHosseini, S. & Regenstein, J.M . (2018). Edible fi lm s and coatings in seafood preservation: A review. Food Chem. 240, 505-513. DOI: 10.1016/j.foodchem.2017.07.034.

10. Kmiotek, M., Bieliński, D.M., Piotrowska, M. & Jakubowski, W. (2016). Essential oils as biocidal agents in natural rubber vulcanizates. Polimery 61, 39-45. DOI:dx.doi.org/10.14314/ polimery.2016.039 (in Polish).

11. Greenhalgh, R. & Walker, J.T. (2017). Antimicrobial strategies for polymeric hygienic surfaces in healthcare. Int. Biodeter. Biodegr. 125, 214-227. DOI: 10.1016/j.ibiod.2017.09.009.

12. Chapi, S. & Devendrappa, H. (2016). Structural, Optical and Thermal Study on PEO-Based Solid Polymer Electrolyte for Optical Device Applications. J. Mater. Sci. Mater. Electron. 27, 11974-11985. DOI: 10.1002/masy.201400272.

13. Ghafari, E., Ghahari, S.A. & Feng, Y. (2016). Co-doping of magnesium with indium in nitrides: fi rst principle calculation and experiment. Compos Part B-Eng. 105, 160-166. DOI: 10.1039/c5ra24642c.

14. Petchwattana, N., Covavisaruch, S. & Wibooranawong, S. (2016). Antimicrobial food packaging prepared from poly (butylene succinate) and zinc oxide. Measurement 93, 442-448. DOI: 10.1016/j.measurement.2016.07.048.

15. Kawakami, H., Yoshida, K., Nishida, Y., Kikuchi, Y. & Sato, Y. (2008). Antibacterial Properties of Metallic Elements for Alloying Evaluated with Application of JIS Z 2801:2000. ISIJ International 9, 1299-1304. DOI: 10.2355/isijinternational. 48.1299.

16. Correa, E., Moncada, M.E. & Zapata, V.H. (2017). Electrical characterization of an ionic conductivity polymer electrolyte based on polycaprolactone and silver nitrate for medical applications. Mater. Lett. 205, 155-157. DOI: 10.1016/j. matlet.2017.06.046.

17. Ghosh, A., Maity, A., Banerjee, R. & Majumder, S.B. (2017). Volatile organic compound sensing using copper oxide thin fi lms: Addressing the cross sensitivity issue. J. Alloy. Compd. 692, 108-118. DOI: 10.1016/j.jallcom.2016.09.001.

18. Żenkiewicz, M., Richert, J., Rytlewski, P. & Richert, A. (2011). Comparative analysis of shungite and graphite effects on some properties of polylactide composites. Polym. Test. 30, 429-435. DOI: 10.1016/j.polymertesting.2011.03.004.

19. Walczak, M., Richert, A. & Burkowsk-But, A. (2014). The effect of polyhexamethylene guanidine hydrochloride (PHMG) derivatives introduced into polylactide (PLA) on the activity of bacterial enzymes. J. Ind. Microbiol. Biotechnol. 41, 1719-1724. DOI: 10.1007/s10295-014-1505-5.

20. Świontek Brzezińska, M., Walczak, M., Richert, A., Kalwasinska, A. & Pejchalová, M. (2016). The Infl uence of Polyhexamethylene Guanidine Derivatives Introduced into Polyhydroxybutyrate on Biofi lm Formation and the Activity of Bacterial Enzymes. Appl. Biochem. Microbiol. 3, 298-303. DOI:10.1134/S0003683816030170.

21. Richert, A. (2017). Structural and barrier properties of polylactide fi lms with bacteriocins after biodegradation in a compost extract. Przem. Chem. 96/6, 1313-1316. DOI: 10.15199/62.2017.6.18 (in Polish).

22. Siegel, J., Polívková, M., Staszek, M., Kolářová, K., Rimpelová, S. & Švorčík, V. (2015). Nanostructured silver coatings on polyimide and their antibacterial response. Mater. Lett. 145, 87-90. DOI: 10.1016/j.matlet.2015.01.050.

23. Cichy, B., Kużdżał, E., Turkowska, M., Kwiecień, J., Rymarz, G., Gibas, E., Kubica, S., Swinarew, B., Kowalska, B., Hexel, L., Soja, M. (2017). A catalyst for the degradation of thermoplastics and the method of its production. PatentP.395713 (in Polish).

24. International Standard (2011). Measurement of antibacteria activity on plastic and non-porous surfaces. ISO 22196.

25. International Standard (2007). Plastics. Foils and plates. Determination of water vapor transmission rate. Part 1: Humidity sensor method. ISO 15106.

26. Ouattara, B., Simard, R.E., Holley, R.A., Piette, G.J.P. & Begin, A. (1997). Antibacterial activity of selected fatty acids and essential oils against six meat spoilage organisms. Int. J. Food Microbiol. 37, 155-162. DOI: 10.1016/S0168-1605(97)00070-6.

27. Wang, L. & Johnson, E.A. (1992). Inhibition of Listeria monocytogenes by fatty acids and monoglycerides. Appl. Environ. Microbiol. 58, 624-629.

28. Tan, O., Sumińska, P. & Bartkowiak, A. (2015). Antimicrobial activity of cinnamon oil and chinese argy wormwood oil, as components of active fi lm-forming emulsions for coating of cellulosic packaging materials. Opakowanie 5, 57-61 (in Polish).

29. Sip, A. & Jusik, P. (2008). Bacteriocins as packaging constituents with antimicrobial action. Opakowanie 10, 20-26 (in Polish).

30. Sip, A. & Jusik, P. (2009). Introducing of antimicrobial substances into packaging materials. Opakowanie 1, 42-47 (in Polish).

31. Siracusa, V., Rocculi, P., Romani, S. & Dalla Rosa, M. (2008), Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol. 19, 634-643. DOI: 10.1016/j. tifs.2008.07.003.

32. Richert, J., Richert, A. & Żenkiewicz, M. (2012). Effect of silver nanoparticles on some physic-chemical and biological properties of polyethylene-matrix nanocomposites. Przem. Chem. 91/8, 1613-1616 (in Polish).

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2018: 0,975
5-year IMPACT FACTOR: 0,878

CiteScore 2018: 1

SCImago Journal Rank (SJR) 2018: 0.269
Source Normalized Impact per Paper (SNIP) 2018: 0.46

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 317 317 17
PDF Downloads 154 154 8