New bio-polyol based on white mustard seed oil for rigid PUR-PIR foams

Open access

Abstract

A new bio-polyol based on white mustard oil (Synapis alba) and 2,2′-mercaptodiethanol (2,2′-MDE) was obtained. The synthesis was carried out by two-step method. In the first stage, the double bond of the unsaturated fatty acid residues was oxidized, and in the second step the epoxy rings were opened with 2,2’-MDE. The properties of the obtained bio-polyol for application as raw material in polyurethane-polyisocyanurate foams (PUR-PIR) - hydroxyl number, acid number, density, viscosity, pH, water content, FTIR, 1H NMR and 13C NMR were investigated. Based on the obtained results, foaming formulations containing 0 to 0.6 R of the new bio-polyol were prepared. Significant impact of bio-polyol on apparent density, compressive strength, brittleness, flammability, water absorption and thermal conductivity of polyurethane composites were noted. Modified foam had better functional properties than reference foam e.g. lower brittleness, better thermal insulation properties and better fire resistance.

1. Prociak, A., Rokicki, G. & Ryszkowska, J. (2014). Polyurethane materials. Warszawa, Poland: Wydaw. Naukowe PWN. [in Polish].

2. Lubczak, J., Chmiel-Szukiewicz, E., Duliban, J., Głowacz--Czerwonka, D., Lubczak, R., Łukasiewicz, B., Zarzyka, I., Łodyga, A., Tyński, P., Kozioł, M., Majerczyk, Z. & Minda--Data, D. (2014). Polyurethane foams with 1,3,5-triazine ring of improved thermal stability. Przem. Chem., 93 (10), 1690–1697. DOI: 10.12916/przemchem.2014.1690. [in Polish].

3. Król, P. (2009). Polyurethanes — A review of 60 years of their syntheses and applications. Polimery, 54 (7–8), 489–500. [in Polish].

4. Czupryński, B. (2004). Issues in chemistry and technology of polyurethanes. Bydgoszcz, Poland: Wydaw. Akad. Bydg. [in Polish].

5. Paciorek-Sadowska, J., Czupryński, B. & Liszkowska, J. (2011). Application of waste products from agricultural-food industry for production of rigid polyurethane-polyisocyanurate foams. J. Porous Mater, 18, 631–638. DOI: DOI 10.1007/s10934-010-9419-8.

6. Kurańska, M., Prociak, A., Kirpluks, M. & Cabulis, U. (2013). Porous polyurethane composites based on bio--components. J. Com. Sci. Tech., 75, 70–76. DOI: 10.1016/j.compscitech.2012.11.014.

7. Piszczyk, Ł., Strankowski, M., Danowska, M., Hejna, A. & Haponiuk, J. (2014). Rigid polyurethane foams from a polyglycerol-based polyol. Eur. Polym. J., 57, 143–150. DOI: 10.1016/j.eurpolymj.2014.05.012.

8. Bartuzi, K. (2012). Vegetable oils, characteristics and production technology. J. Nutri Life, 9. Retrieved October 16, 2017 from http://www.NutriLife.pl/index.php?art=52 [in Polish].

9. Miao, S., Sun, L., Wang, P., Liu, R., Su, Z. & Zhang, S. (2012). Soybean oil-based polyurethane networks as candidate biomaterials: Synthesis and biocompatibility. Eur. J. Lipid Sci. Technol, 114, 1165–1174. DOI: 10.1002/ejlt.201200050.

10. Miao, S., Zhang, S., Su, Z. & Wang, P. (2013). Synthesis of bio-based polyurethanes from epoxidized soybean oil and isopropanolamine. J. App. Polym. Sci, 10, 1929–1936. DOI: 10.1002/app.37564.

11. Garrison, T., Murawski, A. & Quirino, R.L. (2016). Bio--based polymers with potential for biodegradability. Polymers, 8 (7), 262. DOI: 10.3390/polym8070262.

12. Ibrahim, S., Ahmad, A. & Mohamed, N.S. (2015). Characterization of Novel Castor Oil-Based Polyurethane Polymer Electrolytes. Polymers, 7 (4), 747–759. DOI: 10.3390/polym7040747.

13. Abdolhosscini, F. & Besharati Givi, M.K. (2016). Characterization of a Biodegradable Polyurethane Elastomer Derived from Castor Oil. Am. J. Polym. Sci, 6 (1), 18–27. DOI: 10.5923/j.ajps.20160601.03.

14. Noreen, A., Zia, K.M., Zuber, M., Tabasum, S. & Zahoor, A.F. (2016). Bio-based polyurethane: An efficient and environment friendly coating systems: A review. P. Org. Coat., 91, 25–32. DOI: 10.1016/j.porgcoat.2015.11.018.

15. Fu, C., Hu, X., Yang, Z. Shen, L. & Zheng, Z. (2015). Preparation and properties of waterborne bio-based polyurethane/siloxane cross-linked films by an in situ sol–gel process. P. Org. Coat., 84, 18–27. DOI: 10.1016/j.porgcoat.2015.02.008.

16. Kong, X., Liu, G. & Curtis J. (2011). Characterization of canola oil based polyurethane wood adhesives. Int. J. Adh. Adh., 559–564. DOI: 10.1016/j.ijadhadh.2011.05.004.

17. Prociak, A., Kurańska, M., Cabulis, U. & Kirpluks, M. (2017). Rapeseed oil as main component in synthesis of bio--polyurethane-polyisocyanurate porous materials modified with carbon fibers. Polymer Testing, 59, 478–486. DOI: 10.1016/j.polymertesting.2017.03.006.

18. Bueno-Ferrer, C., Hablot, E., del Carmen Garrigos, M., Bocchini, S., Averous, L. & Jimenez, A. (2012). Relationship between morphology, properties and degradation parameters of novative biobased thermoplastic polyurethanes obtained from dimer fatty acids. Polym. Deg. Stab., 97, 1964–1969. DOI: 10.1016/j.polymdegradstab.2012.03.002.

19. Malewska, E., Bąk, S., Kurańska, M. & Prociak, A. (2016). The effect of various rapeseed oil-based polyols on selected properties of flexible polyurethane foams. Polimery, 61, 799–806. DOI: 10.14314/polimery.2016.799.

20. Tu, Y., Kiatsimkul, P., Suppes, G. & Hsieh, F. (2007). Physical properties of water-blown rigid polyurethane foams from vegetable oil-based polyols. J. Appl. Polym. Sci., 105, 453–459. DOI: 10.1002/app.26060.

21. Veronese, V.B., Menger, R.K., de C. Forte, M.M. & Petzhold, C.L. (2011). Rigid polyurethane foam based on vegetable oil. J. Appl. Polym. Sci., 120, 530–537. DOI: 10.1002/app.33185.

22. Prociak, A. (2008). Heat-insulating properties of rigid polyurethane foams synthesized with use of vegetable oils – based polyols. Polimery, 53, 195–200. [in Polish].

23. Prociak, A. (2008). New generation polyurethane thermal insulation materials. Kraków, Poland: Wydaw. Politech.Krak. [in Polish]

24. Rojek, P. & Prociak, A. (2012). Effect of different rapeseed-oil-based polyols on mechanical properties of flexible polyurethane foams. J. Appl. Polym. Sci., 125, 2936–2945. DOI: 10.1002/app.36500.

25. Kurańska, M. & Prociak, A. (2014). Environmentally friendly polyurethane-polyisocyanurate foams for applications in the construction industry. Czasopismo techniczne Budownictwo, 5-B, 149–152.

26. Horak, P. & Benes, H. (2015). Polyurethane foams based entirely on recycled polyols derived from natural oils. Polimery, 60 (9), 579–585. DOI: 10.14314/polimery.2015.579.

27. Liszkowska, J., Czupryński, B., Paciorek-Sadowska, J. & Michałowski, S. (2016). Thermal and flammable properties of rigid PUR-PIR foams obtained by using new compound based on 2-hydroxypropane-1,2,3-tricarboxylic acid. J. Cell. Plast., 52 (3), 321–341. DOI: 10.1177/0021955X15570983.

28. Liszkowska, J., Czupryński, B. & Paciorek-Sadowska, J. (2016). Thermal properties of polyurethane-polyisocyanurate (PUR-PIR) foams modified with tris (5-hydroxypenthyl) citrate. J. Adv. Chem. Eng, 6, 2. DOI: 10.4172/2090-4568.1000148.

29. Paciorek-Sadowska, J., Borowicz, M., Czupryński, B. & Liszkowska, J. (2017). Composites of rigid polyurethane-polyisocyanurate foams with oak bark. Polimery, 62 (9), 666–672. DOI: 10.14314/polimery.2017.666. [in Polish].

30. Paciorek-Sadowska, J., Borowicz, M., Czupryński, B., Liszkowska, J. & Tomaszewska, E. (2018). Application of halloysite as filler in the production of rigid PUR-PIR foams. Polimery, 63 (3), 185–190. DOI: 14314/polimery.2018.3.3. [in Polish].

31. Smagowicz, A. (2011). Obtaining of epoxidized rapeseed oil. Pubished doctoral dissertation, Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland. [in Polish].

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 405 405 24
PDF Downloads 194 193 12