Electrooxidation of phenol on carbon fibre-based anodes through continuous electrolysis of synthetic wastewater

Open access


This work reports on the process of phenol electrooxidation, which is carried-out through continuous electrolysis of synthetic, sodium sulphate-based wastewater. Phenol electrodegradation is examined by means of a laboratory size (ca. 700 cm3 of working volume), poly (methyl methacrylate)-made electrolyser unit for various, carbon fibre and graphite-based anode configurations, and stainless steel cathodes, two different current-densities and concentrations of phenol in synthetically prepared wastewater solution. Proper monitoring of phenol degradation (including quantitative identification of reaction products and calculation of specific energy consumption) in wastewater is performed by means of instrumental, combined HPLC and MS technique in function of electrolysis time.

1. Torres, R.A., Torres, W., Peringer, P. & Pulgarin, C. (2003). Electrochemical degradation of p-substituted phenols of industrial interest on Pt electrodes. Attempt of a structure-reactivity relationship assessment. Chemosphere 50, 97–104. DOI: 10.1016/S0045-6535(02)00487-3.

2. Rajkumar, D. & Palanivelu, K. (2004). Electrochemical treatment of industrial wastewater. J. Hazard. Mater. B113, 123–129. DOI: 10.1016/j.jhazmat.2004.05.039.

3. Pirvu, C., Banu, A., Radovici, O. & Marcu, M. (2008). Application of electrochemical impedance spectroscopy (EIS) to study of phenolic films. Rev. Roum. Chim. 53(11), 1007–1015.

4. Tasic, Z., Gupta, V.K. & Antonijevic, M.M. (2014). The mechanism and kinetics of degradation of phenolics in wastewaters using electrochemical oxidation. Int. J. Electrochem. Sci. 9, 3473–3490.

5. Yang, X., Kirsch, J., Fergus, J. & Simonian, A. (2013). Modeling analysis of electrode fouling during electrolysis of phenolic compounds. Electrochim. Acta 94, 259–268. DOI: 10.1016/j.electacta.2013.01.019.

6. Li, X., Cui, Y., Feng, Y., Xie, Z. & Gu, J. (2005). Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes. Water Res. 39, 1972–1981. DOI: 10.1016/j.watres.2005.02.021.

7. Feng, Y.J. & Li, X.Y. (2003). Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution. Water Res. 37, 2399–2407. DOI: 10.1016/S0043-1354(03)00026-5.

8. Li, M., Feng, C., Hu, W., Zhang, Z. & Sugiura, N. (2009). Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt. J. Hazard. Mater. 162, 455–462. DOI: 10.1016/j.jhazmat.2008.05.063.

9. Zhang, C., Jiang, Y., Li, Y., Hu, Z., Zhou, L. & Zhou, M. (2013).Three-dimensional electrochemical process for wastewater treatment: A general review. Chem. Eng. J. 228, 455–467. DOI: 10.1016/j.cej.2013.05.033.

10. Comninellis, Ch. & Pulgarin, C. (1993). Electrochemical oxidation of phenol for wastewater treatment using SnO2 anodes. J. Appl. Electrochem. 23, 108–112.

11. Arslan, G., Yazici, B. & Erbil, M. (2005). The effect of pH, temperature and concentration on electrooxidation of phenol. J. Hazard. Mater. B124, 37–43. DOI: 10.1016/j.jhazmat.2003.09.015.

12. Dos Santos, I.D., Afonso, J.C. & Dutra, A.J.B. (2011). Electrooxidation of phenol on a Ti/RuO2 anode: Effect of some electrolysis parameters. J. Braz. Chem. Soc. 22(5), 875–883.

13. Krawczyk, P., Rozmanowski, T., Gurzęda, B. & Osińska, M. (2016). Process of phenol electrooxidation on the expanded graphite electrode accompanied by the in-situ anodic regeneration. J. Electroanal. Chem. 775, 228–234. DOI: 10.1016/j.jelechem.2016.06.010.

14. Awad, Y.M. & Abuzaid, N.S. (1999). Electrochemical oxidation of phenol using graphite anodes. Sep. Sci. Technol. 34(4), 699–708.

15. Mu’azu, N.D., Al-Yahya, M., Al-Haj-Ali, A.M. & Abdel- Magid, I.M. (2016). Specific energy consumption reduction during pulsed electrochemical oxidation of phenol using graphite electrodes. J. Environ. Chem. Eng. 4, 2477–2486. DOI: 10.1016/j.jece.2016.04.026.

16. Hussain, S.N., Roberts, E.P.L., Asghar, H.M.A., Campen, A.K. & Brown, N.W. (2013). Oxidation of phenol and the adsorption of breakdown products using a graphite adsorbent with electrochemical regeneration. Electrochim. Acta 92, 20–30. DOI: 10.1016/j.electacta.2013.01.020.

17. Jin, P., Chang, R., Liu, D., Zhao, K., Zhang, L. & Ouyang, Y. (2014). Phenol degradation in an electrochemical system with TiO2/activated carbon fiber as electrode. J. Environ. Chem. Eng. 2, 1040–1047. DOI: 10.1016/j.jece.2014.03.023.

18. Duan, F., Li, Y., Cao H., Wang, Y., Crittenden, J.C. & Zhang, Y. (2015). Activated carbon electrodes: Electrochemical oxidation coupled with desalination for wastewater treatment. Chemosphere 125, 205–211. DOI: 10.1016/j.chemosphere.2014.12.065.

19. Hammani, H., Boumya, W., Laghrib, F., Farahi, A., Lahrich, S., Aboulkas, A. & El Mhammedi, M.A. (2017). Electrocatalytic effect of Al2O3 supported onto activated carbon in oxidizing phenol at graphite electrode. Mater. Today Chem. 3, 27–36. DOI: 10.1016/j.mtchem.2017.01.002.

20. Britto-Costa, P.H. & Ruotolo, L.A.M. (2012). Phenol removal from wastewaters by electrochemical oxidation using boron doped diamond (BDD) and Ti/Ti0.7Ru0.3O2 DSA® electrodes. Braz. J. Chem. Eng. 29(4), 763–773.

21. Jarrah, N. & Mu’azu, N.D. (2016). Simultaneous electrooxidation of phenol, CN, S2− and NH4+ in synthetic wastewater using boron doped diamond anode. J. Environ. Chem. Eng. 4, 2656–2664. DOI: 10.1016/j.jece.2016.04.011.

22. Piotrowska, G. & Pierozynski, B. (2017). Electrodegradation of phenol through continuous electrolysis of synthetic wastewater on platinized titanium and stainless steel anodes. Int. J. Electrochem. Sci. 12, 4444–4455. DOI: 10.20964/2017.05.74.

23. Pierozynski, B. & Mikolajczyk, T. (2012). Hydrogen evolution reaction at Ru-modified carbon fibre in 0.5 M H2SO4. Int. J. Electrochem. Sci. 7, 9697–9706.

24. Pierozynski, B. (2013). Electrooxidation of ethanol on Pd-modified carbon fibre tow material. Int. J. Electrochem. Sci. 8, 634–642.

25. Pierozynski, B. (2013). Hydrogen evolution reaction at Pd-modified carbon fibre and nickel-coated carbon fibre materials. Int. J. Hydrogen Energy 38, 7733–7740. DOI: 10.1016/j.ijhydene.2013.04.092.

26. Pierozynski, B. & Mikolajczyk, T. (2017). Enhancement of ethanol oxidation reaction on Pt (PtSn)-activated nickel foam through in situ formation of nickel oxy-hydroxide layer. Electrocatalysis 8, 252–260. DOI: 10.1007/s12678-017-0362-1.

27. Dolatto, R.G., Messerschmidt, I., Pereira, B.F., Silveira, C.A.P. & Abate, G. (2012). Determination of phenol and o-cresol in soil extracts by flow injection analysis with spectrophotometric detection. J. Braz. Chem. Soc. 23 (5), 970–976.

28. Cun-guang, Y. (1998). Progress of optical determination for phenolic compounds in sewage. J. Environ. Sci. 10(1), 76–86.

29. Al-Maznai, H. & Conway, B.E. (2001). Auto-inhibition effects in anodic oxidation of phenols for electrochemical waste-water purification. J. Serb. Chem. Soc. 66(11–12), 765–784.

30. Berenguer. R., Sieben, J.M., Quijada, C. & Morallon, E. (2016). Electrocatalytic degradation of phenol on Pt- and Rudoped Ti/SnO2-Sb anodes in an alkaline medium. Appl. Catal. B: Environ. 199, 394–404. DOI: 10.1016/j.apcatb.2016.06.038.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 325 325 23
PDF Downloads 120 120 4