Biodegradable polylactide and thermoplastic starch blends as drug release device – mass transfer study

Open access


Four different compositions of polylactide/thermoplastic starch blends (PLA/TPS blends) for application as drug carriers were examined. Initially, using cyanocobalamin (1.355 kDa) as a model compound, the blend with the highest starch content (wt. 60%) was selected for further research of mass transfer phenomenon. In this case, different concentrations of acetaminophen (0.151 kDa), doxorubicin hydrochloride (0.580 kDa) and cyanocobalamin (1.355 kDa) were used for determination of particular releasing profiles. Besides from the comparative analysis of obtained results, the values of the overall mass transfer coefficient (K) were calculated for each of tested drug molecules. Depending on the size and properties of used compound, determined values of the coefficient range from 10−11 to 10−13 m/s. Based on these outcomes, it could be stated that PLA/TPS blend selected in preliminary research, seems to be preferred material for fabrication of long-term drug delivery systems, which could be successfully applied for example in anti-cancer therapy.

1. Tian, H., Tang, Z., Zhuang, X., Chen, X. & Jing, X. (2012). Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37(2), 237–280. DOI: 10.1016/j.progpolymsci.2011.06.004.

2. Ulery, B.D., Nair, L.S. & Laurencin, C.T. (2011). Biomedical Applications of Biodegradable Polymers. Polym. Sci. B Polym. Phys. 49(12), 832–864. DOI: 10.1002/polb.22259.

3. Kulkarni, R.K., Moore, E.G., Hegyeli, A.F. & Leonard, F. (1971). Biodegradable poly(lactic acid) polymers. J. Biomed. Mater. Res. 5(3), 169−181. DOI: 10.1002/jbm.820050305.

4. Gilding, D.K. & Reed, A.M. (1979). Biodegradable polymers for use in surgery—polyglycolic/poly(lactic acid) homo- and copolymers: 1. Polymer 20(12), 1459–1464. DOI: 10.1016/0032-3861(79)90009-0.

5. Martina, M. & Hutmacher, D.W. (2007). Biodegradable polymers applied in tissue engineering research: a review. Polym. Int. 56, 145–157. DOI: 10.1002/pi.2108.

6. Asghari, F., Samiei, M., Adibkia, K., Akbarzadeh, A. & Davaran, S. (2017). Biodegradable and biocompatible polymers for tissue engineering application: a review. Artif. Cells Nanomed. Biotechnol. 45(2), 185–192. DOI: 10.3109/21691401.2016.1146731.

7. Adeosun, S.O., Lawal, G.I. & Gbenebor, O.G. (2014). Characteristics of Biodegradable Implants. J. Mineral. Mater. Charact. Eng. 2, 88–106. DOI: 10.4236/jmmce.2014.22013.

8. Friedman, J.A., Windebank, A.J., Moore, M.J., Spinner, R.J., Currier, B.L. & Yaszemski, M.J. (2002). Biodegradable Polymer Grafts for Surgical Repair of the Injured Spinal Cord. Neurosurgery 51(3), 742–752. DOI: 10.1227/00006123-200209000-00024.

9. Behrens, A.M., Lee, N.G., Casey, B.J., Sinivasan, P., Sikorski, M.J., Daristotle, J.L., Sandler, A.D. & Kofinas, P. (2015). Biodegradable-Polymer-Blend-Based Surgical Sealant with Body-Temperature-Mediated Adhesion. Adv. Mater. 27, 8056–8061. DOI: 10.1002/adma.201503691.

10. Gavasane, A.J. & Pawar, H.A. (2014). Synthetic biodegradable polymers used in controlled drug delivery system: an overview. Clin. Pharmacol. Biopharm. 3(2):121, 1–7. DOI: 10.4172/2167-065X.1000121.

11. Kamaly, N., Yameen, B., Wu, J. & Farokhzad, O.C. (2016). Degradable controlled-release polymers and nanoparticles: mechanisms of controlling drug release. Chem. Rev. 116, 2602–2663. DOI: 10.1021/acs.chemrev.5b00346.

12. Fredenberg, S., Wahlgren, M., Reslow, M. & Axelsson, A. (2011). The mechanism of drug release in poly(lactic-coglycolic acid)-based drug delivery systems – a review. Int. J. Pharm. 415, 34–52. DOI: 10.1016/j.ijpharm.2011.05.049.

13. Guilbert, S., Guillaume, C. & Gontard, N. (2010). New Packaging Materials Based on Renewable Resources: Properties, Applications, and Prospects. In: J. Aguilera, R. Simpson, J. Welti-Chanes, D. Bermudez-Aguirre & G. Barbosa-Canovas (Eds), Food Engineering Interfaces. Food Enginee. Ser. (pp. 619–630). Springer, New York, NY. DOI: 10.1007/978-1-4419-7475-4_26.

14. Iwata, T. (2015). Biodegradable and Bio-Based Polymers: Future Prospects of Eco-Friendly Plastics. Angew. Chem. Int. Ed. 54, 3210–3215. DOI: 10.1002/anie.201410770.

15. Zia, K.M., Noreen, A., Zuber, M., Tabasum, S. & Mujahid, M. (2016). Recent developments and future prospects on bio-based polyesters derived from renewable resources: A review. Int. J. Biol. Macromol. 82, 1028–1040. DOI: 10.1016/j.ijbiomac.2015.10.040.

16. Dorgan, J.R., Lehermeier, H.J., Palade, L.I. & Cicero, J. (2001). Polylactides: properties and prospects of an environmentally begin plastic from renewable resources. Macromol. Symp. 175, 55–66. DOI: 10.1002/1521-3900(200110)175:1<55::AIDMASY55> 3.0.CO;2-K.

17. Kaur, L., Singh, J. & Liu, Q. (2007). Starch – A Potential Biomaterial for Biomedical Applications. In: M.R. Mozafari (Eds), Nanomaterials and Nanosystems for Biomedical Applications (pp. 83–98). Springer, Dordrecht. DOI: 10.1007/978-1-4020-6289-6_5.

18. Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M. & Desobry, S. (2010). Poly-Lactic Acid: Production, Applications, Nanocomposites, and Release Studies. Compr. Rev. Food Sci. Food Saf. 9, 552–571. DOI: 10.1111/j.1541-4337.2010.00126.x.

19. Chen, Y., Geever, L.M., Killion, J.A., Lyons, J.G., Higginbotham, C.L. & Devine, D.M. (2016). Review of Multifarious Applications of Poly (Lactic Acid). Polym. Plast. Technol. Eng. 55(10), 1057–1075. DOI: 10.1080/03602559.2015.1132465.

20. Pluta, M. (2004). Morphology and properties of polylactide modified by thermal treatment, filling with layered silicates and plasticization. Polymer 45(24), 8239–8251. DOI: 10.1016/j.polymer.2004.09.057.

21. Nagarajan, V., Monhanty, A.K. & Misra, M. (2016). Perspective on Polylactic Acid (PLA) based Sustainable Materials for Durable Applications: Focus on Toughness and Heat Resistance. ACS Sustainable Chem. Eng. 4, 2899–2916. DOI: 10.1021/acssuschemeng.6b00321.

22. Saini, P., Arora, M. & Ravi Kumar, M.N.V. (2016). Poly(lactic acid) blends in biomedical applications. Adv. Drug Deliv. Rev. 107, 47–59. DOI: 10.1016/j.addr.2016.06.014.

23. Alcázar-Alay, S.C. & Meireles, M.A.A. (2015). Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci. Technol. Campinas 35(2), 215–236. DOI: 10.1590/1678-457X.6749.

24. Liu, H., Xie, F., Yu, L., Chen, L. & Li, L. (2009). Thermal processing of starch-based polymers. Prog. Polym. Sci. 34(12), 1348–1368. DOI: 10.1016/j.progpolymsci.2009.07.001.

25. Zullo, R. & Iannace, S. (2009). The effects of different starch sources and plasticizers on film blowing of thermoplastic starch: Correlation among process, elongational properties and macromolecular structure. Carbohyd. Polym. 77(2), 376–383. DOI: 10.1016/j.carbpol.2009.01.007.

26. Nafchi, A.A., Moradpour, M., Saeidi, M. & Alias, A.K. (2013). Thermoplastic starches: properties, challenges and prospects. Starch 65, 61–72. DOI: 10.1002/star.201200201.

27. Kaseem, M., Hamad, K. & Deri, F. (2012). Thermoplastic starch blends: a review of recent works. Polym. Sci. A 54(2), 165–176. DOI: 10.1134/S0965545X1202006X.

28. Huneault, M.A. & Li, H. (2007). Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polym. 48(1), 270–280. DOI: 10.1016/j.polymer.2006.11.023.

29. Müller, C.M.O., Pires, A.T.N. & Yamashita, F. (2012). Characterization of Thermoplastic Starch/Poly(Lactic Acid) Blends Obtained by Extrusion and Thermopressing. J. Braz. Chem. Soc. 23(3), 426–434. DOI: 10.1590/S0103-50532012000300008.

30. Siepmann, J. & Siepmann, F. (2012). Modeling of diffusion controlled drug delivery. J. Control. Release 161(2), 351–362. DOI: 10.1016/j.jconrel.2011.10.006.

31. Trusek-Holownia, A. & Jaworska, P. (2015). Polymeric drug carriers – control of the daily dose and therapy duration. Bioc. Biomed. Eng. 35(3), 192–197. DOI: 10.1016/j.bbe.2014.11.001.

32. Ostrowska, J., Kozioł, M., Bogusz, J., Sadurski, W. & Tyński, P. (2017). Biodegradable polymer composition on the basis of thermoplastic starch. Polish Patent Application P. 421850.

33. Trusek-Holownia, A. (2003). A membrane phase contactor for enzymatic synthesis of ZAlaPheOMe, the precursor of bitter dipeptide. Biochem. Eng. J. 16(10), 69–77. DOI: 10.1016/S1369-703X(03)00143-8.

34. Huang, M., Yu, J. & Ma, X. (2005). Ethanolamine as a novel plasticizer for thermoplastic starch. Polym. Degrad. Stabil. 90(3), 501–507. DOI: 10.1016/j.polymdegradstab.2005.04.005.

35. Floyd, J.A., Galperin, A. & Ratner, B.D. (2015). Drug encapsulated polymeric microspheres for intracranial tumor therapy: A review of the literature. Adv. Drug Deliv. Rev. 91, 23–37. DOI: 10.1016/j.addr.2015.04.008.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 421 421 26
PDF Downloads 174 174 19