PIV measurement of tube-side in a shell and tube heat exchanger

Open access


In order to improve the performance of the shell and tube heat exchanger, a porous baffle and a splitter bar are employed in this research. Through the arrangement of the porous baffle in the tube-side inlet and the splitter bar in the tube, the flow distribution of liquid in the heat exchanger is improved. PIV technology is used to investigate the unsteady flow in the tube-side inlet and the outlet of different models. The porous baffle significantly improves the flow of fluid in the shell and tube heat exchanger, especially by eliminating/minimizing the maldistribution of fluid flow in the tube-side inlet. The performance of the arc baffle is better than that of the straight baffle. The splitter bar has a minimal effect on the flow field of the tube-side inlet, but it effectively improves the flow in the tube bundle and restrains the vortex generation in the tube-side outlet.

1. Pan M., Jamaliniya S., Smith R., Bulatov I. & Goughb M., Higleyb T. & Droegemuellerb P. (2013). New insights to implement heat transfer intensification for shell and tube heat exchangers. Energy 57(8), 208–221. DOI: 10.1016/j.energy.2013.01.017.

2. Sanaye, S. & Hajabdollahi, H. (2010). Multi-objective optimization of shell and tube heat exchangers. Appl. Therm. Enginee. 30(14), 1937–1945. DOI: 10.1016/j.applthermaleng.2010.04.018.

3. Ozden, E. & Tari, I. (2010). Shell side CFD analysis of a small shell-and-tube heat exchanger. Energy Conver. Managem. 51(5), 1004–1014. DOI: 10.1016/j.enconman.2009.12.003.

4. Hosseini, R., Hosseini-Ghaffar, A. & Soltani M. (2007). Experimental determination of shell side heat transfer coefficient and pressure drop for an oil cooler shell-and-tube heat exchanger with three different tube bundles. Appl. Therm. Enginee. 27(5–6), 1001–1008. DOI: 10.1016/j.applthermaleng.2006.07.023.

5. Pacio, J.C. & Dorao, C.A. (2010). A study of the effect of flow maldistribution on heat transfer performance in evaporators. Nuc. Enginee. Design 240(11), 3868–3877. DOI: 10.1016/j.nucengdes.2010.09.004.

6. Mohr, U. & Gelbe, H. (2000). Velocity distribution and vibration excitation in tube bundle heat exchangers. Int. J. Therm. Sci. 39(3), 414–421. DOI: 10.1016/S1290-0729(00)00214-3.

7. Kim, M.I., Lee, Y., Kim B.W., Lee, D.H. & Song W.S. (2009). CFD modeling of shell-and-tube heat exchanger header for uniform distribution among tubes. Korean J. Chem. Enginee. 26(2), 359–363. DOI: 10.1007/s11814-009-0060-7.

8. Wang, K., Tu, X.C., Bae, C.H. & Kim, H.B. (2015). Optimal design of porous baffle to improve the flow distribution in the tube-side inlet of a shell and tube heat exchanger. Int. J. Heat Mass Trans. 80, 865–872. DOI: 10.1016/j.ijheatmasstransfer.2014.09.076.

9. Wang, K., Tu, X.C. & Kim, H.B. CFD simulation and PIV measurement of a shell and tube heat exchanger. The 9th Pacific Symposium on Flow Visualization and Image Processing, 25–28 August 2013. Busan, Korea.

10. Wang S., Wen, J. & Li, Y. (2009). An experimental investigation of heat transfer enhancement for a shell-and-tube heat exchanger. App. Therm. Enginee. 29(11–12), 2433–2438. DOI: 10.1016/j.applthermaleng.2008.12.008.

11. Lalot, S., Florent, P., Lang, S.K. & Bergles, A.E. (1999). Flow maldistribution in heat exchangers. Appl. Therm. Enginee. 19(8), 847–863. DOI: 10.1016/S1359-4311(98)00090-8.

12. Jiao, A., Zhang, R. & Jeong, S. (2003). Experimental investigation of header configuration on flow maldistribution in plate-fin heat exchanger. Appl. Therm. Enginee. 23(10), 1235–1246. DOI: 10.1016/S1359-4311(03)00057-7.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 165 165 57
PDF Downloads 55 55 26