Composite coatings with nickel matrix and graphene as dispersed phase

Open access

Abstract

The paper presents the results of the studies of nickel-graphene composite coatings deposited by the electrochemical reduction method. A bath with low concentration of nickel ions, graphene as dispersed particles and organic compounds were used for deposition of the composite coatings nickel-graphene. The results of investigations of coatings deposited from the electrolyte containing 0.33, 0.5 and 1 g/dm3 graphene and two surface-active compounds were shown. The particles content in the coatings, the surface morphology, the cross-sectional structures of the coated samples, thickness and internal stresses were measured. Voltammetric method was used for examination of the corrosion resistance of samples of composite coatings in 0.5 M NaCl solution. The obtained results suggest that the content of incorporated graphene particles increases with an increasing amount of graphene in plating bath. The applications of organic addition agents was advantageous because it caused compressive stresses in the coatings. All of the nickel-graphene composite coatings had better corrosion resistance than the nickel coatings.

1. Łosiewicz, B. (2015). The role of Ni(II) ion adsorption onto TiO2 in the electrodeposition of composite Ni-P+TiO2 coatings. Solid State Phenomena. 228, 89–100. DOI: 10.4028/www.scientific.net/SSP.228.89

2. Szeptycka, B. & Gajewska, A. (2003). The structural and tribological properties of nanocrystalline electrochemical coatings with nickel matrix. Solid State Phenomena 94, 245–248.

3. Szeptycka, B. & Gajewska-Midziałek, A., (2005). Investigations of the wear resistance of composite coatings Ni-SiC. Kompozyty 5, 2–7.

4. Gajewska-Midziałek, A., Szeptycka, B., Derewnicka, D. & Nakonieczny, A. (2006). Wear resistance of nanocrystalline composite coatings. Tribology Int. 39(8), 763–768. DOI: 10.1016/j.triboint.2005.07.005.

5. Szeptycka, B., (2010). The nano – structured Ni-SiC coatings and their tribological properties. Engineering & Automation Problems. 2, 117–120.

6. Benea., L., Bonora, A., Borello, A. & Martelli, S. (2002). Effect of SiC size dimensions on the corrosion wear resistance of the electrodeposited composite coating. Mat. Corr. 53, 23–29.

7. Malfatti, C.F., Ferreira, J. Z., Santos, C.B., Souza, B.V., Fallavena, E.P., Vaillant, S. & Bonino, J.P. (2005). NiP/SiC composite coatings: the effects of particles on the electrochemical behavior. Corr. Sci. 47, 567–580. DOI: 10.1016/j.corsci.2004.07.011.

8. Gladkovas, M., Medeliene, V., Samuleviciene, M. & Juzeliunas E. (2002). Corrosion study of electroplated nickel-matrix composites with B4C, Al2O3 and SiC. Chemija 13(1), 36–40.

9. Szczygieł, B. & Kołodziej, M. (2005). Corrosion resistance of Ni/Al2O3 coatings in NaCl solution. Trans. Inst. Metal Finish 83(4), 181–187. DOI: org/10.1179/002029605X61658

10. Wan, X., Xu, Y., Guo, H., Shehzad, K., Ali, A., Liu, Y., Yang, J., Dai, D., Lin, C.-T., Liu, L., Cheng, H.-C., Wang, F., Wang, X., Lu, H., Hu, W., Pi, X., Dan, Y., Luo, J., Hasan, T., Duan, X., Li, X., Xu, J., Yang, D., Ren, T. & Yu, B. (2017). A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? Nat. Part. J. 2D Mater Appl. 4, 1–8. DOI:10.1038/s41699-017-0008-4.

11. Xu, Y., Ali, A., Shehzad, K., Meng, N., Xu, M.S., Zhang, Y.H., Wang, X. R., Jin, C. H., Wang, H.T., Guo, Y.Z., Yang, Z.Y., Yu, B., Liu, Y., He, Q.Y., Duan, X.F., Wang, X.M., Tan, P.H., Hu, W.D., Lu, H. & Hasan, T. (2017). Solvent-based soft-patterning of graphene lateral heterostructures for broadband high-speed metal-semiconductor-metal photodetectors. Adv. Mater. Technol. 2(2), 1600241.

12. Du, S., Lu, W., Ali, A., Zhao, Z., Shehzad, K., Guo, H., Ma, L., Liu, X., Pi, X., Wang, P., Fang, H., Xu, Z., Gao, Ch., Dan, Y., Tan, P., Wang, H., Lin, Ch-T., Yang, J., Dong, S., Cheng, Z., Li, E., Yin, W., Luo, J., Yu, B., Hasan, T., Xu, Y., Hu, W. & Duan, X. (2017). A broadband fluorographene photodetector. Adv. Mater. 29, 1–8. DOI: 10.1002/adma.201700463

13. Shehzad, K., Shi, T., Qadir, A., Wan, X., Guo, H., Ali, A., Xuan, W., Xu, H., Gu, Z., Peng, X., Xie, J., Sun, L., He, Q., Xu, Z., Gao, C., Rim, Y.-S., Dan, Y., Hasan, T., Tan, P., Li, E., Yin, W., Cheng, Z., Yu, B., Xu, Y., Luo, J. & Duan, X. (2017). Designing an efficient multimode environmental sensor based on graphene-silicon heterojunction. Adv. Mater. Technol. 2(4), 1600262. DOI: 10.1002/admt.201600262.

14. Wang, D., Yan, W., Vijapur, S.H. & Botte, G.G. (2013). Electrochemically reduced graphene oxide–nickel nanocomposites for urea electrolysis. Electrochim. Acta 89, 732–736. DOI: 10.1016/j.electacta.2012.11.046.

15. Kuang, D., Xu, L., Liu, L., Hu, W. & Wu, Y. (2013). Graphene–nickel composites. Appl. Surf. Sci. 273, 484–490. DOI: 10.1016/j.apsusc.2013.02.066.

16. Kumar, C.M.P., Venkatesha, T.V. & Shabadi, R. (2013). Preparation and corrosion behavior of Ni and Ni–graphene composite coatings. Mater. Res. Bull. 48, 1477–1483. DOI: 10.1016/j.materresbull.2012.12.064.

17. Jiang, K., Li, J. & Liu, J. (2014). Electrochemical codeposition of graphene platelets and nickel for improved corrosion resistant properties. RSC Adv. 4, 36245–36252.

18. Ren, Z., Meng, N., Shehzad, K., Xu, Y., Qu, S., Yu, B. & Luo, J.K. (2015). Mechanical properties of nickel-graphene composites synthesized by electrochemical deposition. Nanotechnology. 26(6), 065706.

19. Jabbar, A., Yasin, G., Khan, W.Q., Anwar, M.Y., Korai, R.M., Nizam, M.N. & Muhyodin, G. (2017). Electrochemical deposition of nickel graphene composite coatings: effect of deposition temperature on its surface morphology and corrosion resistance. Royal Soc. Chem. Adv. 7, 31100–31109. DOI: 10.1039/c6ra28755g.

20. Huang, X., Qi, X., Boey, F. & Zhang, H. (2012). Graphene- based composites. Chem. Soc. Rev. 41, 666–686. DOI: 10.1039/c1cs15078b.

21. Woźniak, J.T., Trzaska, M., Cieślak, G., Cygan, T., Kostecki, M. & Olszyna, A. (2016). Preparation and mechanical properties of alumina composites reinforced with nickel-coated graphene. Ceramics Int. 42, 8597–8603. DOI: 10.1016/j.ceramint.2016.02.089.

22. Grodecki, K. (2013). Spektroskopia ramanowska grafenu. Mater. Elektron. 41(1), 47–53.

23. Ferrari, A., (2007), Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57.DOI: 10.1016/j.ssc.2007.03.052.

24. Szeptycka, B. (2009). Naprężenia własne galwanicznych powłok niklowych. Część 2. Wpływ cząstek dyspersyjnych i związków organicznych na naprężenia własne kompozytowych powłok niklowych. The internal stresses of the galvanic nickel coatings. Part 2. Influence of the dispersion particles and the organic compounds on the internal stresses of the composite nickel coatings. Inż.Powierzchni 1, 46–53.

25. Low, C.T.J., Wills, R.G.A. & Walsh, F.C. (2006). Electrodeposition of composite coatings containing nanoparticles in a metal deposit. Surf. Coat. Technol. 201, 371–383. DOI: 10.1016/j.surfcoat.2005.11.123.

26. Guo, Ch., Zuo, Y., Zhao, X., Zhao, J. & Xiong, J. (2008). Effects of surfactants on electrodeposition of nickel-carbon nanotubes composite coatings. Surf. Coat. Technol. 202, 3385–3390. DOI: 10.1016/j.surfcoat.2007.12.005.

27. Gul, H., Kilic, F., Aslan, S., Alp, A. & Akbulut, H. (2009). Characteristics of electro-co-deposited Ni–Al2O3 nano-particle reinforced metal matrix composite (MMC) coatings. Wear 267, 976–990. DOI: 10.1016/j.wear.2008.12.022.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 336 336 34
PDF Downloads 134 134 22