Enhancement the conditioning of waste activated sludge through a sequence of freeze/thaw-electro-Fenton process

Open access


Sludge conditioning is an important stage in sludge management. In the present study, a sequence of freeze/thaw-electro-Fenton process was designed and specific resistance filtration (SRF) was monitored during sludge conditioning as an important factor in sludge dewaterability. Furthermore, protein and polysaccharide concentrations were measured during the experiments. Results showed that the lowest SRF value contributed to −10°C in freezing process which showed a reducing trend by decreasing solution pH. In addition, results revealed that solution pH less than 3 caused a significant improvement in sludge dewatering; so the lowest SRF has been registered at pH = 2. By increasing current intensity from 0.5 to 1A, SRF values were reduced and then followed by an enhancement with increasing current intensity to 3.2 A. The lowest SRF value (6.1 × 104 m/kg) was obtained at H2O2 = 30 mg/L which was the best conditions for sludge dewatering.

1. Xinghong Zhang, H.L., Kai, Chen, Zhang, Liu, Han, Wu & Haiyi, Liang. (2012). Effect of potassium ferrate(K2FeO4) on sludge dewaterability under different pH conditions. Chem. Eng. J. 210, 467–474. DOI: 10.1016/j.cej.2012.09.013.

2. A. T. Pham, M.S. & Virkutyte, J. (2010). Sludge dewatering by sand-drying bed coupled with electro-dewatering at various potentials. Int. J. Min. Reclam. Environ. 24, 151–162. DOI: 10.1080/17480930903132620.

3. Elisabeth Neyens, J.B., Raf, Dewil & Bart, De Heyder. (2004). Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J. Hazard. Mater. 106, 83–92. DOI: 10.1016/j.jhazmat.2003.11.014.

4. L. H. Mikkelsen, K.K. (2002). Physico-chemical characteristics of full scale sewage sludge with implications to dewatering. Water Res. 36, 2451–2462. DOI: 10.1016/S0043-1354(01)00477-8.

5. G. P. Sheng, H.Q.Y. & Li, X.Y. (2010). Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology Adv. 28, 882–894. DOI: 10.1016/j.biotechadv.2010.08.001.

6. W. W. Li, H.Q.Y. (2014). Insight into the roles of microbial extracellular polymer substances in metal bio sorption. Bio Res. Technol. 160, 15–23. DOI: 10.1016/j.biortech.2013.11.074.

7. J. H. Bruus, P.H.N. & Keiding, K. (1992). on the stability of activated – sludge flocks with implications to dewatering. Water Res. 26, 1597–1604. DOI: 10.1016/0043-1354(92)90159-2.

8. X. M. Liu, G.P.S., H.W. Luo, F. Zhang, S.J. Yuan, J. Xu, R.J. Zeng, J.G., Wu. & H.Q. Yu. (2010). Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environ. Sci. Technol. 44, 4355–4360. DOI: 10.1021/es9016766.

9. Dong-Qin, He, L.F.W., Hong Jiang & Han-Qing Yu. (2015). A Fenton-like process for the enhanced activated sludge dewatering. Chem. Eng. J. 272, 128–134. DOI: 10.1016/j.cej.2015.03.034.

10. Huan Liu, J.Y., Yafei Shi, Ye Li, Shu He, Changzhu Yang. & Hong Yao. (2012). Conditioning of sewage sludge by Fenton’s reagent combined with skeleton builders. Chemosphere. 88, 235–239. DOI: 10.1016/j.chemosphere.2012.02.084.

11. Izrail, S. & Turovskiy P.K.M. (2006). Wastewater sludge processing, John Wiley & Sons, Inc., Hoboken, New Jersey.

12. Kakii, K., Kitamura, S., Shirakashi, T. & Kuriyama, M. (1985). Effect of calcium ion on sludge characteristics. Ferment Technol. 63, 263.

13. Eriksson L.a.A., B. (1991). Characterization of activated sludge and conditioning with cationic polyelectrolytes. Wat.Sci. Tech. 28, 203. DOI: 10.1016/j.desal.2007.07.016.

14. Ormeci, B. (2004). Freeze-Thaw Conditioning of Activated Sludge: effect of Monovalent, Divalent, and Trivalent Cations. J Resid. Sci. Tech. 3, 143–150. DOI: 1544-8053/04/03.

15. B. Ormeci, P.A.V. (2001). Effect of dissolved organic material and cations on freeze–thaw conditioning of activated and alum sludges. Water Res. 35, 4299–4306. DOI: 10.1016/S0043-1354(01)00174-9.

16. M S, P.A.T. (2010). Effect of freeze/thaw conditions, polyelectrolyte addition, and sludge loading on sludge electrodewatering process. Chem. Eng. J. 164, 85–91. DOI: 10.1016/j.cej.2010.08.028

17. Esmaeli, R., Hassani, A., Eslami, A., Moghadam, M.A. & Safari A. (2011). Di-(2-Ethylhexyl) Phthalate oxidative degradation by Fenton process in synthetic and real petrochemical wastewater. Iranian. J. Environ. Health Sci. Eng. 8(3), 201. DOI: 10.1007/s11270-008-9903-9.

18. Jaafarzadeh, N., Amiri, H. & Ahmadi, M. (2012). Factorial experimental design application in odification of volcanic ash as a natural adsorbent with Fenton process for arsenic removal. Environ Technol. 33(2), 159–165. DOI: 10.1080/09593330.2011.554887.

19. Ahmadi, M., Amiri, H. & Martínez, S.S. (2012). Treatment of phenol-formaldehyde resin manufacturing wastewater by the electrocoagulation process. Desalin Water Treat 39(1–3), 176–181. DOI: 10.1080/19443994.2012.669172.

20. Jaafarzadeh, N., Ghanbari, F., Ahmadi, M. & Omidinasab, M. (2017). Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: permanganate, electro-fenton and Co3O4/UV/peroxymonosulfate. Chem. Eng. J. 308, 142–150. DOI: 10.1016/j.cej.2016.09.015.

21. APHA. (2005). Standard Methods for the Examination of Water & Wastewater (21 th ed). Am. Public Health Assoiation, Washington DC.

22. Shihab, M.S. (2010). Assessment of using chemical coagulants and effective microorganisms in sludge dewaterability process improvement. Environ. Sci. Technol. 3, 35–46. DOI: 10.3923/jest.2010.35.46.

23. J. Kruger, N. (1994). The Bradford method for protein quantitation. Basic protein and peptide protocols. 9–15. DOI: 10.1385/0-89603-268-X:9.

24. Tatsuya Masukoa, A.M., Norimasa Iwasaki, Tokifumi Majima, Shin-Ichiro Nishimura & Yuan C. Lee. (2005). Carbohydrate analysis by a phenol–sulfuric acid method in micro plate format. Anal. Biochem. 339, 69–72. DOI: 10.1016/j.ab.2004.12.001.

25. P.A. Vesilind, S.W. & Martel, C.J. (1991). Freeze–thaw sludge conditioning and double layer compression. Can. J. Civ. Eng. 18, 1078–1083. DOI: 1139/l91-130.

26. T. D. Pham, R.A.S., Virkutyte, J. & Sillanpa, M. (2009). Combined ultra-sonication and electro kinetic remediation for persistent organic removal from contaminated kaolin. Electrochim. Acta. 54, 1403–1407. DOI: 10.1016/j.electacta.2008.09.015.

27. D.J. Lee, Y.H.H. (1994). Fast freeze/thaw treatment on activated sludge: floc structure and sludge dewaterability. Environ. Sci. Technol. 28, 1444–1449. DOI: 10.1021/es00057a011.

28. W.T. Hung, I.L.C., W.W. Lin. & D.J. Lee. (1996). Unidirectional freezing of waste activated sludge: effects of freezing speed. Environ. Sci. Technol. 30, 2391–2396. DOI: 10.1021/es950889x.

29. P.A. Vesilind, C.J.M. (1990). Freezing of water and wastewater sludges. Environ. Eng. Manag. 116, 854–862. DOI: 10.1061/(ASCE)0733-9372(1990)116:5(854).

30. Pham-Anh, Tuana, M.S. (2010). Effect of freeze/thaw conditions, polyelectrolyte addition, and sludge loading on sludge electro-dewatering process. Chem. Eng. J. 164, 85–91. DOI: 10.1016/j.cej.2010.08.028.

31. Xun-an Ning, HC J.W., Yujie Wang, Jingyong Liu & Meiqing Lin. (2014). Effects of ultrasound assisted Fenton treatment on textile dyeing sludge structure and dewaterability. Chem. Eng. J. 242, 102–108. DOI: 10.1016/j.cej.2013.12.064

32. Chih-Ta Wang, W.L.C. M.H.C. & Yi-Ming Kuo. (2010). COD removal from real dyeing wastewater by electro-Fenton technology using an activated carbon fiber cathode. Desalination. 253, 129–134. DOI: 10.1016/j.desal.2009.11.020.

33. Neyens, E. B.J. W.M. & De heyder, B. (2003). Pilot-scale peroxidation (H2O2) of sewage sludge. J. Hazard. Mater. 98, 91–106. DOI: 10.1016/S0304-3894(02)00287-X.

34. Rusong, Mo S.H. W.D., Jialin Liang & Shuiyu Sun. (2015). A rapid Fenton treatment technique for sewage sludge dewatering. Chem. Eng. J. 269, 391–398. DOI: 10.1016/j.cej.2015.02.001.

35. Tatsuya Masukoa, AM N.I., Tokifumi Majima & Shin-Ichiro Nishimura, Y.L. (2005). Carbohydrate analysis by a phenol–sulfuric acid method in micro plate format. Anal. Biochem. 339, 69–72. DOI: 10.1016/j.ab.2004.12.001.

36. Hai-ping Yuan XfY C.f.Y. & Nan-wen Zhu. (2011). Enhancement of waste activated sludge dewaterability by electro-chemical pretreatment. J. Hazard. Mater. 187, 82–88. DOI: 10.1016/j.jhazmat.2010.12.106.

37. Hai-ping Yuan XbC S.p.C., Nan-wen Zhu & Zhen-ying Zhou. (2011). New sludge pretreatment method to improve dewaterability of waste activated sludge. Bioresour. Technol. 102, 5659–5664. DOI: 10.1021/es1000209.

38. Pham, A.T. (2010). sewage sludge electro dewatering. Int. J. Min. Reclam. Environ. 24, 151–162. DOI: 10.1080/07373937.2012.654874.

39. Eslami, A., Moradi, M., Ghanbari, F. & Raei Shaktaee, H. (2013). Study on Performance of Electro-Fenton for Color Removal from Real Textile Wastewater Based on ADMI. Color Sci. Technol. 7, 173–180.

40. Gharibi, H., Sowlat, M.H., Mahvi, A.H., Keshavarz, M., Safari, M.H., Bahram Abadi, M. & Alijanzadeh, A. (2012). Performance evaluation of a bipolar electrolysis/electrocoagulation (EL/EC) reactor to enhance the sludge dewaterability. Chemosphere. 69, 1–8. DOI: 10.1016/j.chemosphere.2012.09.069.

41. P -ATSMI P. (2012). Sewage Sludge Electro-Dewatering Treatment-A review. Drying Technol. 30, 691–706. DOI: 10.1080/07373937.2012.654874.

42. Haiping, Yuan NZ L.S. (2010). Conditioning of sewage sludge with electrolysis: Effectiveness and optimizing study to improve dewaterability. Bioresour. Technol. 101, 4285–4290. DOI: 10.1016/j.biortech.2009.12.147.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 149 149 49
PDF Downloads 61 61 36