Energy efficiency analysis of styrene production by adiabatic ethylbenzene dehydrogenation using exergy analysis and heat integration

Open access


Styrene is a valuable commodity for polymer industries. The main route for producing styrene by dehydrogenation of ethylbenzene consumes a substantial amount of energy because of the use of high-temperature steam. In this work, the process energy requirements and recovery are studied using Exergy analysis and Heat Integration (HI) based on Pinch design method. The amount of steam plays a key role in the trade-off between Styrene yield and energy savings. Therefore, optimizing the operating conditions for energy reduction is infeasible. Heat integration indicated an insignificant reduction in the net energy demand and exergy losses, but 24% and 34% saving in external heating and cooling duties, respectively. When the required steam is generated by recovering the heat of the hot reactor effluent, a considerable saving in the net energy demand, as well as the heating and cooling utilities, can be achieved. Moreover, around 68% reduction in the exergy destruction is observed.

1. Akpa, J.G. (2012). Simulation of an Isothermal Catalytic Membrane Reactor for the Dehydrogenation of Ethylbenzene, Chem. Proc. Enginee. Res. 3, 14–28, ISSN 2225–0913.

2. Arno Behr. (2017). Styrene production from ethyl benzene, Retrieved July 13, 2017 from (

3. Hermann, Ch., Quicker, E. & Dittmeyer, R. (1997). Mathematical simulation of catalytic dehydrogenation of ethylbenzene. J. Memb. Sci. 136, 161–172. DOI: 10.1016/S0376-7388(97)81990-4.

4. PRWeb, World Styrene Market Dynamics Reviewed. Retrieved July, 13, 2017, from

5. PRLog, Styrene Global Markets to 2020. Retrieved July, 13, 2017, from

6. Snyder, J.D. & Subramaniam, B. (1994). Novel Reverse Flow Strategy for Ethylbenzene Dehydrogenation in A Packed bed Reactor. Chem. Enginee. Sci. 49(24), 5565–5601. DOI: 10.1016/0009-2509(94)00287-8.

7. Haynes, T.N., Georgakis, C. & Caram, H.S. (1992). The Application of Reverse Flow Reactors to Endothermic Reactions. Chem. Enginee. Sci. 47(9–11), 2927–2932. DOI: 10.1016/0009-2509(92)87153-H.

8. Abdalla, B.K., Elnashaie, S.S.E.H., Alkhowaiter, S. & Elshishini, S.S. (1994). Intrinsic kinetics and industrial reactors modelling for the dehydrogenation of ethylbenzene to styrene on promoted iron oxide catalysts. Appl. Catal. A: General 113, 89–102. DOI: 10.1016/0926-860X(94)80243-2.

9. Hossain, M.M., Atanda, L., Al-Yassir, N., Al-Khattaf, S. (2012). Kinetics modeling of ethylbenzene dehydrogenation to styrene over a mesoporous alumina supported iron catalyst. Chem. Enginee. J. 207–208, 308–321. DOI: 10.1016/j.cej.2012.06.108.

10. Tamsilian, Y., Ebrahimi, A.N., Ramazani, S.A. & Abdollahzadeh, H. (2012). Modeling and sensitivity analysis of styrene monomer production process and investigation of catalyst behavior. Comp. Chem. Enginee. 40, 1–11. DOI: 10.1016/j.compchemeng.2012.01.014.

11. Zarubina, V. (2015). Oxidative dehydrogenation of ethylbenzene under industrially relevant conditions: on the role of catalyst structure and texture on selectivity and stability. PhD Thesis, University of Groningen, Netherland.

12. Lee, W.J. (2005). Ethylbenzene Dehydrogenation into Styrene: Kinetic Modeling and Reactor Simulation. PhD Thesis, Texas A&M.

13. Nederlof, C. (2012). Catalytic dehydrogenations of ethylbenzene to styrene. PhD thesis, University of Delft, Netherland.

14. Park, S.E. & Chang, J.S. (2004). Novel Process for Styrene from Ethylbenzene with Carbon Dioxide. 227th National Meeting of the American-Chemical Society, MAR 28-APR 01, 2004 (pp U1076-U1076), Anaheim, CA, USA. ISSN: 0065-7727.

15. Mimura, N. & Saito, M. (2000a). Dehydrogenation of ethylbenzene to styrene over Fe2O3/Al2O3 catalysts in the presence of carbon dioxide. Catal. Today 55, 173–178. DOI: 10.1016/S0920-5861(99)00236-9.

16. Mimura, N. & Saito, M. (200b). Dehydrogenation of ethylbenzene to styrene in the presence of CO2. Appl. Organometal. Chem. 14, 773–777. DOI: 10.1002/1099-0739(200012)14

17. Cavani, F. & Trifiro, F. (1995). Alternative Processes for the Production of Styrene. Appl. Catal. A, 133, 219–239.DOI: 10.1016/0926-860X(95)00218-9.

18. Mimura, N., Takahara, I., Saito, M., Hattori, T., Ohkuma, K. & Ando, M. (1998). Dehydrogenation of ethylbenzene over iron oxide-based catalyst in the presence of carbon dioxide. Catal. Today 45, 60–64. DOI: 10.1016/S0920-5861(98)00246-6.

19. Abdalla, B.K., Elnashaie, S.S. E.H. (1994). Catalytic Dehydrogenation of Ethylbenzene to Styrene in Membrane Reactors. AIChE 40(12), 2055–2059. DOI: 10.1002/aic.690401215.

20. Vaezi, M.J., Babaluo, A.A. & Shafiei, S. (2015). Modeling of Ethylbenzene Dehydrogenation Membrane Reactor to Investigate the Potential Application of a Microporous Hydroxy Sodalite Membrane. J. Chem. Petrol. Enginee. 49(1), 51–62. ISSN: 2423–6721.

21. Gundersen, T. (2017). Chapter 2.1 in Handbook of Process Integration Heat Integration -Targets and Heat Exchanger Network Design, Retrieved July, 7, 2017.

22. Yoon, S.G. Lee, J. & Park, S. (2007). Heat integration analysis for an industrial ethylbenzene plant using pinch analysis. Appl. Ther. Enginee. 27, 886–893. DOI: 10.1016/j.applthermaleng.2006.09.001.

23. Carra. S. & Fomi. L. (1965). Kinetics of Catalytic Dehydrogenation of Ethylbenzene to Styrene. Engng. Chem. Proc. Des. Dev. 4, 281–285. DOI: 10.1021/i260015a009.

24. Modell, D.J. (1972). Optimization theory and applications: optimum temperature simulation of the styrene monomer reaction. Chem. Enginee. Comput. Vol. 1. AIChE, New York.

25. Lee, W.J. & Froment, G.F. (2008). Ethylbenzene Dehydrogenation into Styrene: Kinetic Modeling and Reactor Simulation. Ind. Eng. Chem. Res. 47, 9183–9194. DOI: 10.1021/ie071098u.

26. James, D.H. & Castor, W.M. (1994). Ullmann’s encyclopedia of industrial chemistry. Wiley. Vol. 25, 5th ed., p. 329.

28. Hanyak, M.E. (2011). Companion in Chemical Engineering: An Instructional Supplement, CreateSpace Independent Publishing Platform, USA.

29. Smith, J.M., Van Ness, H.C. & Abbott, M.M. (2005). Introduction to Chemical Engineering Thermodynamics, 6th edition, McGraw Hills, USA.

30. Wall, G. (2011). Life Cycle Exergy Analysis of Renewable Energy System. Renew. Energy J. 4, 72–77. DOI: 10.2174/1876387101004010072.

31. Martinaitis, V., Streckiene, G., Biekša, D. & Bielskus, J. (2016). The exergy efficiency assessment of heat recovery exchanger for air handling units, using a state property – Coenthalpy. Appl. Therm. Enginee. 108, 388–397. DOI: 10.1016/j.applthermaleng.2016.07.118.

32. Shenoy, U.V. (1995). Heat Exchange Network Synthesis: Process Optimization by Energy and Resource Analysis. Gulf Publ. Co., Houston, TX.

33. Linnhoff, B. (1993). Pinch analysis- A state of the art overview. Trans. Inst. Chem. Eng. Chem. Eng. Res. Des. 71, Part A5, 503–522. ISSN: 0263-8762.

34. Gundersen, T. & Naess, L. (1988). The synthesis of cost optimal heat exchanger networks: An industrial review of the state of the art. Comput. Chem. Enginee. 12(6), 503–530. DOI: 10.1016/0890-4332(90)90084-W.

35. Douglas, J.M. (1988). Conceptual Design of Chemical Processes, McGraw Hill, New York.

36. El-Halwagi, M.M. (2012). Sustainable Design Through Process Integration, 1st Ed., Butterworth-Heinemann, USA.

37. Klemes, J. (2013). Handbook of Process Integration (PI), Woodhead Publishing, USA.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 785 785 78
PDF Downloads 487 487 75