Preparation and properties of nanocrystalline Ni/graphene composite coatings deposited by electrochemical method

Open access

Abstract

The paper presents results of studies of composite nickel/graphene coatings produced by electrodeposition method on a steel substrate. The method of producing composite coatings with nanocrystalline nickel matrix and dispersion phase in the form of graphene is presented. For comparative purposes, the study also includes nano-crystalline Ni coatings produced by electrochemical reduction without built-in graphene flakes. Graphene was characterized by Raman spectroscopy, transmission and scanning electron microscopes. Results of studies on the structure and morphology of Ni and Ni/graphene layers produced in a bath containing different amounts of graphene are presented. Material of the coatings was characterized by SEM, light microscopy, X-ray diffraction. The microhardness of the coatings was examined by Knoop measurements. The adhesion of the coatings with the substrate was tested using a scratchtester. The influence of graphene on the structure and properties of composite coatings deposited from a bath with different graphene contents was determined.

1. Wasekar, N.P. et al. (2016). Influence of mode of electrodeposition, current density and saccharin on the microstructure and hardness of electrodeposited nanocrystalline nickel coatings. Sur. & Coat. Technol.291, 130–140. DOI: 10.1016/j.surfcoat.2016.02.024.

2. Jiang, S.W. et al. (2016). Electrodeposition of Ni-Al2O3 composite coatings with combined addition of SDS and HPB surfactants. Surf. & Coat. Technol. 286, 197–205. DOI: 10.1016/j.surfcoat.2015.12.028.

3. Trzaska, M. & Cieślak, G. (2014). The structure and properties of nanocrystalline Ni/Al2O3 layers produced by electrocrystallization. Composites Theory and Practice 4, 203–207.

4. Góral, A., Berent, K., Nowak, M. & Kania, B. (2016). Microstructure and properties of Ni and Ni/Al2O3 Coatings Electrodeposited at Various Current Densities. Arch. Metall. Mater. 61, 55–60. DOI: 10.1515/amm-2016-0001.

5. Low, C.T.J. et al. (2010). Electrodeposition and tribological characterisation of nickel nanocomposite coatings reinforced with nanotubular titanates. Surf. & Coat. Technol. 205, 1856–1863. DOI: 10.1016/j.surfcoat.2010.08.054.

6. Khalil, M.W. et al. (2015). Electrodeposition of Ni-GNS-TiO2 nanocomposite coatings as anticorrosion film for mild steel in neutral environment. Surf. & Coat. Technol. 275, 98–111. DOI: 10.1016/j.surfcoat.2015.05.033

7. Szeptycka, B., Gajewska-Midziałek, A. & Babul, T. (2016). Electrodeposition and corrosion resistance of Ni-graphene composite coatings. J. Mater. Engine. Perfor. 25, 3134–3138. DOI: 10.1007/s11665-016-2009-4.

8. Kumar, C.M.P. et al. (2013). Preparation and corrosion behavior of Ni and Ni–graphene composite coatings. Mater.Res. Bull. 48, 1477–1483. DOI: 10.1016/j.materresbull.2012.12.064.

9. Chen, J. et al. (2016). Preparation and tribological behavior of Ni-graphene composite coating under room temperature. Appl. Surf. Sci. 361, 49–56. DOI: 10.1016/j.apsusc.2015.11.094.

10. Cieślak, G. & Trzaska, M. (2016). Tribological properties of nanocomposite Ni/graphene coatings produced by electrochemical reduction method. Composites: Theory and Practice 2, 79–83.

11. Buczko, Z. et al. (2016). Electrochemical copper composite coatings with Graphene as a dispersion phase. Inżynieria Powierzchni (Surface Engineering) 1, 56–61.

12. Cieślak, G., Mazurek, A. & Trzaska, M. (2015). Composite layers of Ni/graphene produced by electrochemical reduction method. Inżynieria Powierzchni (Surface Engineering), 3, 44–47 (in Polish).

13. Oleszak, D. & Olszyna, A. (2004). Crystallite size and lattice strain determination of Nial-Al2O3 nanocomposite from x-ray diffraction line broadening. Composites: Theory and Practice 4, 284–288 (in Polish).

14. Cheap Tubes Inc. Retrieved June, 2017, from https://www.cheaptubes.com.

15. Dong, L.X. & Chen, Q. (2010). Properties, synthesis, and characterization of graphene. Front. Mater. Sci. China 4 (1), 45–51. DOI: 10.1007/s11706-010-0014-3.

16. Ferrari, A.C. (2007). Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications 143, 47–57. DOI: 10.1016/j.ssc.2007.03.052.

17. Szczygieł, B. (1999). Studium nad otrzymywaniem i właściwościami elektrolitycznych warstw dyspersyjnych niklu z węglikiem krzemu. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej (in Polish).

18. Łągiewka, E. & Budniok, A. (2010). Struktura, właściwości i metody badań materiałów otrzymanych elektrolitycznie. Katowice, Wydawnictwo Uniwersytetu Śląskiego (in Polish).

19. Hovestad, A. & Janssen, L.J. (1995). Electrochemical codeposition of inert particles in a metallic matrix. J. Appl. Electrochem. 25, 519–527. DOI: 10.1007/BF00573209.

20. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. & Firsov, A.A. (2004). Electric Field Effect in Atomically Thin Carbon Films. Science 306, 666–669, DOI: 10.1126/science.1102896.

21. Chronowska-Przywara, K. & Kot, M. (2014). Effect of scratch test parameters on the deformation and fracture of coating-substrate systems (in Polish). Tribologia 2, 19–29.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 460 460 30
PDF Downloads 268 268 20