Ultrasound-assisted emulsification–microextraction and spectrophotometric determination of cobalt, nickel and copper after optimization based on Box-Behnken design and chemometrics methods

Open access

Abstract

A fast, simple, and economical method for extraction, preconcentration and determination of cobalt, nickel and copper as their 1-(2-pyridilazo) 2-naphthol (PAN) complexes based on ultrasound-assisted emulsification–microextraction (USAEME) and multivariate calibration of spectrophotometric data is presented. Various parameters affecting the extraction efficiency were optimized both with univariate and Box–Behnken design. The resolution of ternary mixtures of these metallic ions was accomplished by using partial least-squares regression (PLS), orthogonal signal correction-partial least-squares regression (OSC-PLS), and orthogonal signal correction-genetic algorithmspartial least-squares regression (OSC-GA-PLS). Under the optimum conditions, the calibration graphs were linear in the range of 2.0–150.0, 2.0–120.0 and 2.0–150.0 ng mL−1 for Co2+, Ni2+, and Cu2+, respectively, with a limit of detection of 0.14 (Co2+), 0.13 (Ni2+) and 0.14 ng mL−1 (Cu2+) and the relative standard deviation was <2.5%. The method was successfully applied to the simultaneous determination of these cations in different samples.

LITERATURE CITED

  • 1. Hedberg, Y., Herting, G. & Wallinder, I.O. (2011). Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media – A study on zinc, copper and nickel. Environ. Pollut. 159(5), 1144–1150. DOI: 10.1016/j.envpol.2011.02.014.

  • 2. Şengil, I.A. & Özacar, M. (2008). Biosorption of Cu(II) from aqueous solutions by mimosa tannin gel. J. Hazard. Mater. 157(2–3), 277–285. DOI: 10.1016/j.jhazmat.2007.12.115.

  • 3. Regueiroa, J., Lomparta, M., Garcia-Jaresa, C., Garcia-Monteagudob, J.C. & Celaa, R. (2008). Ultrasound-assisted emulsification–microextraction of emergent contaminants and pesticides in environmental waters. J. Chromatogr. A 1190(1–2), 27–38. DOI: 10.1016/j.chroma.2008.02.091.

  • 4. Feng, J., Qiu, H., Liu, X. & Jiang, Sh. (2013). The development of solid-phase microextraction fibers with metal wires as supporting substrates. TrAC, Trends Anal. Chem. 46, 44–58. DOI: 10.1016/j.trac.2013.01.015.

  • 5. Su, Sh., Chen, B., He, M. & Hu, B. (2014). Graphene oxide–silica composite coating hollow fiber solid phase microextraction online coupled with inductively coupled plasma mass spectrometry for the determination of trace heavy metals in environmental water samples. Talanta 123, 1–9. DOI: 10.1016/j.talanta.2014.01.061.

  • 6. Miró, M. & Hansen, E.H. (2013). On-line sample processing involving microextraction techniques as a front-end to atomic spectrometric detection for trace metal assays: A review. Anal. Chim. Acta 782, 1–11. DOI: 10.1016/j.aca.2013.03.019.

  • 7. Sereshti, H., Khojeh, V. & Samadi, S. (2011). Optimization of dispersive liquid–liquid microextraction coupled with inductively coupled plasma-optical emission spectrometry with the aid of experimental design for simultaneous determination of heavy metals in natural waters. Talanta 83(3), 885–890. DOI: 10.1016/j.talanta.2010.10.052.

  • 8. Mirzaei, M., Behzadi, M., Mahmoud Abadi, N. & Beizaei, A. (2011). Simultaneous separation/preconcentration of ultra-trace heavy metals in industrial wastewaters by dispersive liquid–liquid microextraction based on solidification of floating organic drop prior to determination by graphite furnace atomic absorption spectrometry. J. Hazard. Mater. 186(2–3), 1739–1743. DOI: 10.1016/j.jhazmat.2010.12.080,

  • 9. Stanisz, E., Werner, J. & Zgoła-Grześkowia, A. (2014). Liquid-phase microextraction techniques based on ionic liquids for preconcentration and determination of metals. TrAC, Trends Anal. Chem. 61, 54–66. DOI: 10.1016/j.trac.2014.06.008.

  • 10. Deng, Q., Chen, M., Kong, L., Zhao, X., Guo, J. & Wen, X. (2013). Novel coupling of surfactant assisted emulsification dispersive liquid–liquid microextraction with spectrophotometric determination for ultra-trace nickel. Spectrochim. Acta, Part A 104, 64–69. DOI: 10.1016/j.saa.2012.10.080.

  • 11. Rezaee, M., Assadi, Y., Milani Hosseini, M.R., Aghaee, E., Ahmadi, F. & Berijani, S., (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A 1116(1–2), 1–9. DOI: 10.1016/j.chroma.2006.03.007.

  • 12. Takagai, Y., Akiyama R. & Igarashi, S. (2006). Powerful preconcentration method for capillary electrophoresis and its application to ultra-trace amounts of polycyclic aromatic hydrocarbons analyses. Anal. Bioanal. Chem. 385(5), 888–894. DOI: 10.1007/s00216-006-0447-9.

  • 13. Andruch, V., Balogh, I.S., Burdel, M., Kocúrová, L. & Šandrejová, J. (2013). Application of ultrasonic irradiation and vortex agitation in solvent microextraction. TrAC, Trends Anal. Chem. 49, 1–19. DOI: org/10.1016/j.trac.2013.02.006.

  • 14. Jiang, H., Qin, Y. & Hu, B. (2008). Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 74(5), 1160–1165. DOI: 10.1016/j.talanta.2007.08.022.

  • 15. Anthemidis, A.N. & Ioannou, K.I.G. (2011). Sequential injection dispersive liquid–liquid microextraction based on fatty alcohols and poly(etheretherketone)-turnings for metal determination by flame atomic absorption spectrometry. Talanta 84, 1215–1220. DOI: 10.1016/j.talanta.2010.12.017.

  • 16. Sereshti, H., Entezari Heravi, Y. & Samadi, S. (2012). Optimized Ultrasound-Assisted Emulsification Microextraction for Simultaneous Trace Multielement Determination of Heavy Metals in Real Water Samples by ICP-OES. Talanta 97, 235–241. DOI: org/10.1016/j.talanta.2012.04.024.

  • 17. Oliveira, E.P., Yang, L., Sturgeon, R.E., Santelli, R.E., Bezerra, M.A., Willie, S.N. & Capilla, R. (2011). Determination of trace metals in high-salinity petroleum produced formation water by inductively coupled plasma mass spectrometry following on-line analyte separation/preconcentration. J. Anal. At. Spectrom. 26(3), 578–585. DOI: 10.1039/c0ja00108b.

  • 18. Karim-Nezhad, G., Saghatforoush L. & Ershad, S. (2009). Simultaneous Determination of Copper and Iron in Biological Samples with 1-(2-Pyridylazo)-2-naphthol in Anionic AOT Micellar Solution Using Derivative Spectrophotometry. Asian J. Chem. 21(2), 2565–2572.

  • 19. Niazi, A. & Yazdanipour, A. (2008). Simultaneous spectrophotometric determination of cobalt, copper and nickel using 1-(2-thiazolylazo)-2-naphthol by chemometrics methods. Chin. Chem. Lett. 19(7), 860–864. DOI: 10.1016/j.cclet.2008.04.047.

  • 20. Saavedra, R., Soto, C., Gómez, R. & Muñoz, A. (2013). Determination of lead(II) by thermal lens spectroscopy (TLS) using 2-(2′-thiazolylazo)-p-cresol (TAC) as chromophore reagent. Microchem. J. 110, 308–313. DOI: 10.1016/j.microc.2013.04.019.

  • 21. Niazi, A. & Azizi, A. (2008). Orthogonal Signal Correction – Partial Least Squares Method for Simultaneous Spectrophotometric Determination of Nickel, Cobalt, and Zinc. Turk. J. Chem. 32, 217–228.

  • 22. Hejazi, L., Mohammadi, D.E., Yamini, Y. & Brereton, R.G. (2004). Solid-phase extraction and simultaneous spectrophotometric determination of trace amounts of Co, Ni and Cu using partial least squares regression. Talanta 62(1), 185–191 DOI: 10.1016/S0039-9140(03)00412-0.

  • 23. Niazi, A., Azizi A. & Ramezani, M. (2008). Simultaneous spectrophotometric determination of mercury and palladium with Thio-Michler’s Ketone using partial least squares regression and orthogonal signal correction. Spectrochim. Acta, Part A 71 (3), 1172–1177. DOI: 10.1016/j.saa.2008.03.017.

  • 24. Niazi, A. (2006). Simultaneous Determination of Uranium and Thorium Using Partial Least Squares Regression and Orthogonal Signal Correction. J. Braz. Chem. Soc. 17, 1020–1026. DOI: org/10.1590/S0103-50532006000500029.

  • 25. Tarighat, M.A. & Afkhami, A. (2012). Spectrophotometric Determination of Cu(II), Co(II) and Ni(II) using Ratio Spectra Continuous Wavelet Transformation in some Food and Environmental Samples. J. Braz. Chem. Soc. 23, 1312–1319. DOI: org/10.1590/S0103-50532012000700016.

  • 26. Leardi, R. (2001). Genetic algorithms in chemometrics and chemistry: a review. J. Chemom. 15, 559–569. DOI: 10.1002/cem.651.

  • 27. Ghasemi, J., Niazi A. & Leardi, R. (2003). Genetic-algorithm-based wavelength selection in multicomponent spectrophotometric determination by PLS: application on copper and zinc mixture. Talanta 59(2), 311–317. DOI:10.1016/S0039-9140(02)00505-2.

  • 28. Niazi, A., Soufi, A. & Mobarakabadi, M. (2006). Genetic Algorithm Applied to Selection of Wavelength in Partial Least Squares for Simultaneous Spectrophotometric Determination of Nitrophenol Isomers. Anal. Lett. 39(11), 2359–2372. DOI: 10.1080/00032710600751016.

  • 29. Ghasemi, J., Ebrahimi, D.M., Hejazi, L., Leardi R. & Niazi, A. (2007). Simultaneous kinetic-spectrophotometric determination of sulfide and sulfite by partial least squares and genetic algorithm variable selection. J. Anal. Chem. 62 (4), 348–354. DOI: 10.1134/S1061934807040090.

  • 30. Niazi, A. & Leardi, R. (2012). Genetic algorithms in chemometrics. J. Chemom. 26(6), 345–351. DOI: 10.1002/cem.2426.

  • 31. Karbakhsh, R. & Sabet, R. (2011). Application of different chemometric tools in QSAR study of azoloadamantanes against influenza A virus. Res. Pharm. Sci. 6(1), 23–33.

  • 32. Lurie, J.J. (1978). Handbook of Analytical Chemistry. Moscow: Mir Publishers.

  • 33. Niazi, A., Khorshidi N. & Ghaemmaghami, P. (2015). Microwave-assisted of dispersive liquid–liquid microextraction and spectrophotometric determination of uranium after optimization based on Box–Behnken design and chemometrics methods. Spectrochim. Acta, Part A 135, 69–75. DOI: 0.1016/j.saa.2014.06.148.

  • 34. Box, E.P. & Behnken, D. W. (1960). Some new three-level designs for the study of quantitative variables. Technometrics 2, 455–475.

  • 35. Chopra, S., Patil, G.V. & Motwani, S.K. (2007). Release modulating hydrophilic matrix systems of losartan potassium: optimization of formulation using statistical experimental design. Eur. J. Pharm. Biopharm. 66(1), 73–82. DOI: 10.1016/j.ejpb.2006.09.001.

  • 36. Yetilmezsoy, K., Demirel, S. & Vanderbei, R.J. (2009). Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J. Hazard. Mater. 171(1–3), 551–562. DOI: 10.1016/j.jhazmat.2009.06.035.

  • 37. Shokoufi, N., Shemirani, F. & Assadi, Y. (2007). Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Anal. Chim. Acta 597(2), 349–356. DOI: 10.1016/j.aca.2007.07.009.

  • 38. Jaggi, S. & Gupta, U. (2013). Solid phase extraction and preconcentration of Ni(II) using 1-(2-pyridylazo)-2-naphthol) (PAN) modified β-cyclodextrin butanediol diglycidyl ether polymer as a solid phase extractant. Maced. J. Chem. Chem. En. 32(1), 57–67.

  • 39. Gharehbaghi, M., Shemirani, F. & Baghdadi, M. (2008). Dispersive liquid–liquid microextraction and spectrophotometric determination of cobalt in water samples. Int. J. Environ. Anal. Chem. 88, 513–523. DOI: 10.1080/03067310701809128.

  • 40. Shokoufi, N., Shemirani, F. & Memarzadeh, F. (2007). Fiber optic-linear array detection spectrophotometry in combination with cloud point extraction for simultaneous preconcentration and determination of cobalt and nickel. Anal. Chim. Acta 601(2), 204–211. DOI: 10.1016/j.aca.2007.08.042.

  • 41. Wold, S., Antii, H., Lindgren, F. & Ohman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemom. Intell. Lab. Syst. 44, 175–185.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2016: 0.725
5-year IMPACT FACTOR: 0.774

CiteScore 2016: 0.76

SCImago Journal Rank (SJR) 2016: 0.262
Source Normalized Impact per Paper (SNIP) 2016: 0.462

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 107 107 56
PDF Downloads 51 51 35