Titania/mesoporous silica nanotubes with efficient photocatalytic properties

Open access


Ordered nanocrystalline titania-mesoporous silica nanotube structures are synthesized by hydrolysis of the titania precursor inside pours silica shell. Silica coating surrounding carbon nanotubes was further removed by thermal reduction. The proposed method of functionalization silica channels with the titania nanoparticles preclude aggregation of TiO2 nanoparticles. The nanocrystalline silica/titania (mt-SiO2/TiO2) nanotubes were prepared according to the describe method has high specific surface area and possesses excellent photocatalytic properties capable of decomposing phenol and methylene blue in a short time. Since the nanocrystalline TiO2 is produced in the wall of the mesoporous silica tube, phenol or dye molecules can react with TiO2 nanoparticles from both the inside and outside.

1. Carp, O., Huisman, C.L. & Reller, A. (2004) Photoinduced reactivity of titanium dioxide. Solid State Chem. 32, 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001.

2. Ma, Y. & Yao, J.N. (1998) Photodegradation of Rhodamine B catalyzed by TiO2 thin films. J. Photochem. Photobiol. A 116, 167–170. DOI: 10.1016/S1010-6030(98)00295-0.

3. Stylidi, M., Kondarides, D.I. & Verykios, X.E. (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Appl. Catal. B 40, 271–286. DOI: 10.1016/S0926-3373(02)00163-7.

4. Chen, D. & Ray, A.K. (2001) Removal of toxic metal ions from wastewater by semiconductor photocatalysis. Chem. Eng. Sci. 56, 1561–1570. DOI: 10.1016/S0009-2509(00)00383-3.

5. Khenniche, L., Favier, L., Bouzaza, A., Fourcade, F., Aissani, F. & Amrane, A. (2015) Photocatalytic degradation of bezacryl yellow in batch reactors–feasibility of the combination of photocatalysis and a biological treatment. Environ. Technol. 36(1), 1–10. DOI: 10.1080/09593330.2014.934740.

6. Favier, L., Ionut Simion, A., Rusu, L., Pacala, M.L., Grigoras, C. & Bouzaza, A. (2015) Removal of an Organic Refractory Compound by Photocatalysis in Batch Reactor-Kinetic Studies. Environ. Eng. Manag. J. 14(6), 1327–1338.

7. Favier, L., Simion, A.I., Matei, E., Grigoras, C.G., Kadmi, Y. & Bouzaza, A. (2016). Photocatalytic oxidation of a hazardous phenolic compound over TiO2 in a batch system. Environ. Eng. Manag. J. 15, 5, 1059–1067.

8. Kitano, M., Matsuoka, M., Ueshima, M. & Anpo, M. (2007) Recent developments in titanium oxide-based photocatalysts. Appl. Catal. A. 325, 1–14. DOI: 10.1016/j.apcata.2007.03.013.

9. Fujishima, A., Zhang, X.T. & Tryk, D.A. (2008) TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63(12), 515–582. DOI: 10.1016/j.surfrep.2008.10.001.

10. Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K. & Taga, Y. (2001) Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science. 293, 269–271. DOI: 10.1126/science.1061051.

11. Cendrowski, K., Chen, X., Zielinska, B., Kalenczuk, R.J., Rümmeli, M.H., Büchner, B.R., Klingeler & Borowiak-Palen, E. (2011) Synthesis, characterization, and photocatalytic properties of core/shell mesoporous silica nanospheres supporting nanocrystalline titania J. Nanopart. Res. 11051/NANO, 307(13), 5899–5908. DOI: 10.1007/s11051-011-0307-1.

12. Hoffmann, M.R., Martin, S.T., Choi, W. & Bahnemann, D.W. (1995) Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 95, 69–96. DOI: 10.1021/cr00033a004.

13. Khan, S.U.M., Al-Shahry, M. & Ingler, W.B. (2002) Efficient photochemical water splitting by a chemically modified n-TiO2. Science. 297, 2243–2245. DOI: 10.1126/science.1075035.

14. Sikora, P., Augustyniak, A., Cendrowski, K., Horszczaruk, E., Rucinska, T., Nawrotek, P. & Mijowska, E. (2016) Characterization of mechanical and bactericidal properties of cement mortars containing waste glass aggregate and nanomaterials. Materials 9, 701, 1–16. DOI: 10.3390/ma9080701.

15. Vinodgopal, K., Wynkoop, D.E. & Kamat, P.V. (1996) Environmental photochemistry on semiconductor surfaces: Photosensitized degradation of a textile azo dye, acid orange 7, on TiO2 particles using visible light. Environ. Sci. Technol. 30(5), 1660–1666. DOI: 10.1021/es950655d.

16. Hu, C., Lan, Y., Qu, J., Hu, X. & Wang, A. (2006) Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria. J. Phys. Chem. B. 110(9), 4066–4072. DOI: 10.1021/jp0564400.

17. Rao, K.V.S., Zhuo, B., Cox, J.M., Chiang, K., Brungs, M. & Amal, R. (2006) Photoinduced Bactericidal Properties of Nanocrystalline TiO2 Thin Films. J. Biomed. Nanotechnol. 2, 71–73. DOI: 10.1166/jbn.2006.006.

18. Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K. & Fujishima, A. (1997) Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J. Photochem. Photobiol. A: Chem. 106, 51–56. DOI: 10.1016/S1010-6030(97)00038-5.

19. Sunada, K., Kikuchi, Y., Hashimoto, K. & Fujishima, A. (1998) Bactericidal and Detoxification Effects of TiO2 Thin Film Photocatalysts. Environ. Sci. Technol. 32, 726–728. DOI: 10.1021/es970860o.

20. Parkin, I.P. & Palgrave, R.G. (2005) Self-cleaning coatings. J. Mater. Chem. 15, 1689–1695. DOI: 10.1039/B412803F

21. Fujishima, A., Rao, T.N. & Tryk, D.A. (2001) Titanium dioxide photocatalysis. J. Photochem. Photobiol. C: Photochem. Rev. 1, 1–21. DOI: 10.1016/S1389-5567(00)00002-2.

22. Pitoniak, E., Wu, C.Y., Londeree, D., Mazyck, D., Bonzongo, J.C., Powers, K. & Sigmund, W. (2003) Nanostructured silica-gel doped with TiO2 for mercury vapor control. J. Nanopart. Res. 5, 281–292. DOI: 10.1023/A:1025582731470.

23. Wu, C.Y., Lee, T.G., Tyree, G., Arar, E. & Biswas, P. (1998) Capture of Mercury in Combustion Systems by In Situ–Generated Titania Particles with UV Irradiation. Environ. Eng. Sci. 15, 137–148. DOI: 10.1089/ees.1998.15.137.

24. Li, Y., Murphy, P. & Wu, C.Y. (2008) Removal of elemental mercury from simulated coal-combustion flue gas using a SiO2–TiO2 nanocomposite. Fuel Process. Technol. 89, 567–573. DOI: 10.1016/j.fuproc.2007.10.009.

25. Li, Y. & Wu, C.Y. (2007) Kinetic Study for Photocatalytic Oxidation of Elemental Mercury on a SiO2–TiO2 Nanocomposite. Environ. Eng. Sci. 24(1), 3–12. DOI: 10.1089/ees.2007.24.3.

26. Li, Y. & Wu, C.Y. (2006) Role of moisture in adsorption, photocatalytic oxidation, and reemission of elemental mercury on a SiO2-TiO2 nanocomposite. Environ. Sci. Technol. 40(20), 6444–6448. DOI: 10.1021/es061228a.

27. Pitoniak, E., Wu, C.Y., Mazyck, D.W. & Powers, K.W. (2005) Adsorption Enhancement Mechanisms of Silica−Titania Nanocomposites for Elemental Mercury Vapor Removal. Environ. Sci. Technol. 39, 1269–1274. DOI: 10.1021/es049202b.

28. Huma, R.J., Michael, V.L., Li, Q. & Barron, A.R. (2011) Simple Route to Enhanced Photocatalytic Activity of P25 Titanium Dioxide Nanoparticles by Silica Addition. Environ. Sci. Technol. 45(4), 1563–1568. DOI: 10.1021/es102749e.

29. Fox, M.A. & Dulay, M.T. (1993) Heterogeneous photocatalysis. Chem. Rev. 93, 341–357. DOI: 10.1021/cr00017a016.

30. Augustyniak, A., Cendrowski, K., Nawrotek, P., Barylak, M. & Mijowska. E. (2016) Investigating the interaction between Streptomyces sp. and titania/silica nanospheres. Water, Air, & Soil Pollut. 227, 230, 1–13. DOI: 10.1007/s11270-016-2922-z.

31. Cendrowski, K., Sikora, P., Horszczaruk, E. & Mijowska, E. (2017) Waste-free synthesis of silica nanospheres and silica nanocoatings from recycled ethanol-ammonium solution. Chem. Papers 71, 841–848. DOI: 10.1007/s11696-016-0099-y.

32. Cendrowski, K., Sikora, P., Zielinska, B., Horszczaruk, E. & Mijowska, E. (2017) Chemical and thermal stability of the core-shelled magnetite nanoparticles with solid silica. Appl. Surf. Sci. 407, 391–397. DOI: 10.1016/j.apsusc.2017.02.118.

33. Sikora, P., Cendrowski, K., Markowska-Szczupak, A., Horszczaruk, E. & Mijowska, E. (2017) The effects of silica/ titania nanocomposite on the mechanical and bactericidal properties of cement mortars. Constr. Build. Mater. 150, 738–746. DOI: 10.1016/j.conbuildmat.2017.06.054.

34. Machinda, M., Norimoto, W.K. & Kimura, T. (2005) Antibacterial Activity of Photocatalytic Titanium Dioxide Thin Films with Photodeposited Silver on the Surface of Sanitary Ware. J. Am. Ceram. Soc. 88(1), 95–100. DOI: 10.1111/j.1551-2916.2004.00006.x.

35. Paulo, S.O.C., Vidal, M. & Ferreir, L.S. (2010) Antifungal Nanoparticles and Surfaces. Biomacromolecules 11, 2810–2817. DOI: 10.1021/bm100893r.

38. Li, M., Hong, Z., Fang, Y. & Huang, F. (2008) Synergistic effect of two surface complexes in enhancing visible-light photocatalytic activity of titanium dioxide. Mater. Res. Bull. 43, 2179–2186. DOI: 10.1016/j.materresbull.2007.08.030.

39. Cendrowski, K., Peruzynska, M., Markowska-Szczupak, A., Chen, X., Wajda, A., Lapczuk, J., Kurzawski, M., Kalenczuk, R.J., Drozdzik, M. & Mijowska, E. (2014) Antibacterial performance of nanocrystallined titania confined in mesoporous silica nanotubes. Biomed Microdevices. 16 (3), 449–458. DOI: 10.1007/s10544-014-9847-3.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 315 315 30
PDF Downloads 153 153 16