Montmorillonite as the catalyst in oxidation of limonene with hydrogen peroxide and in isomerization of limonene

Open access

Abstract

In our studies montmorillonite (MMT) was used as the heterogeneous, natural catalyst. This material was previously prepared by bentonite purification with help of the sedimentation method. The obtained catalyst was characterized by: XRD, SEM, BET and EDX. Catalytic tests with montmorillonite as the catalyst were performed with the natural terpene – R-(+)-limonene. This compound was oxidized with hydrogen peroxide and, moreover, in the separate process it was also isomerized. As the main products of limonene oxidation were detected: (1,2-8,9)-diepoxide, perillyl alcohol, carvone, carveol, 1,2-epoxylimonene and 1,2-epoxylimonene diol. In the isomerization of R-(+)-limonene were formed: terpinenes, terpinolene and p-cymene. Conversions of limonene in these processes reached 70–80%. The application of montmorillonite (the natural of origin) in the studied processes (oxidation and isomerization) is environmentally friendly, it allows to reduce the cost of the studied processes. The resulting products of the processes of oxidation and isomerization of R-(+)-limonene have many applications.

1. Królikowski, W. & Rosłaniec, Z. (2004). Polymer nanocomposites. Kompozyty 4, 3–15 (in Polish)

2. Wilpiszewska, K., Antosik, A.K. & Spychaj, T. (2017). Novel hydrophilic carboxymethyl starch/montmorillonite nano-composite Films. Carbohydr. Polym. 128, 82–89. DOI: 10.1016/j.carbpol.2015.04.023.

3. Olejnik, M. (2008). Polymer nanocomposites involving montmorillonite – preparation, evaluation methods, properties and application. Tech. Wyr. Włók. 67–74. (in Polish).

4. Kacperski, M. (2003). Polymer nanocomposites, Kompozyty 3, 225–231. (in Polish).

5. Kacperski, M. (2002). Polymer nanocomposites. Polimery. 47, 801–807. (in Polish)

6. Malesa, M. (2004). Nanofillers of polymer composites. Elastomery, 3, 12–17 (in Polish)

7. Sikora, M. (2006). Rheological modifiers essential parameter of cosmetic products. Przem. Kosmetyczny 11, 26–31. (in Polish)

8. Kunert, A. & Zaborski, M. (2010). Construction, properties and applications of layered minerals. Przem. Chem. 1, 1510–1517. (in Polish)

9. Komadel, P. (2016). Acid activated clays: Materials in continuous demand. Appl. Clay Sci. 131, 84–99. DOI: 10.1016/j.clay.2016.05.001.

10. Fernandes, C., Catrinescu, C., Castilho, P., Russo, P.A., Carrott, M.R. & Breen, C. (2007). Catalytic conversion of limonene over acid activated Serra de Dentro (SD) bentonite. Appl. Catal. A: General. 318, 108–120. DOI: 10.1016/j.apcata.2006.10.048.

11. Koolia, F., Liu, Y., Alshahateet Solhe, F., Messali, M. & Bergaya, F. (2009). Reaction of acid activated montmorillonites with hexadecyl trimethylammonium bromide solution. Appl. Clay Sci. 43, 357–363. DOI: 10.1016/j.clay.2008.10.006.

12. Nagendrappa, G. (2011). Organic synthesis using clay and clay-supported catalysts. Appl. Clay Sci. 53, 106–138. DOI: 10.1016/j.clay.2010.09.016.

13. Stekrova, M., Kumara, N., Aho, A., Sinev, I., Grünert, W., Dahl, J., Roine, J., Arzumanov, S.S., Mäki-Arvela, P. & Yu. Murzin, D. (2014). Isomerization of α-pinene oxide using Fe-supported catalysts: Selective synthesis of campholenic alde-hyde. Appl. Catal. A: General. 470, 162–176. DOI: 10.1016/j.apcata.2013.10.044.

14. Comelli, N., Avila, M.C., Volzone, C. & Ponzi, M. (2013). Hydration of α-pinene catalyzed by acid clays. Cent. Eur. J. Chem. 11, 689–697. DOI: 10.2478/s11532-013-0217-4.

15. Ravasio, N., Zaccheria, F., Gervasini, A. & Messi, C. (2008). A new, Fe based, heterogeneous Lewis acid: Selective isomerization of a-pinene oxide. Catal. Commun. 9, 1125–1127. DOI: 10.1016/j.catcom.2007.10.019.

16. Kumar, V. & Agarwal, A.K. (2014). A review on catalytic terpene transformation over heterogenous catalyst, Inter. J. Curr. Res. Chem. Pharm. Sci. 1, 78–88.

17. Volcho, K. & Salakhutdinov, N.F. (2008). Transformations of Terpenoids on Acidic Clays. Mini-Rev. Org. Chem. 5, 345–354. DOI: 10.2174/157019308786242151.

18. Yadav, M.Kr., Chudasama, C.D. & Jasra, R.V. (2004). Isomerisation of α-pinene using modified montmorillonite clays. J. Mol. Catal. A: Chemical, 216, 51–59. DOI: 10.1016/j.molcata.2004.02.004.

19. Yarovaya, O.I., Korchagina, D.V., Salakhutdinov, N.F. & Tolstikov, G.A. (2012). Reaction of isocembreol and alcohols on clay. Chem. Nat. Comp. 48, 57–59. DOI: 0009-3130/12/4801-0056.

20. Akgu, M., Ozyagcı, B. & Karabakan, A.l. (2013). Evaluation of Fe- and Cr-containing clinoptilolite catalysts for the production of camphene from a-pinene. J. Ind. Enginee. Chem. 19, 240–249. DOI: 10.1016/j.jiec.2012.07.024.

21. Ilina, I.V., Suslov, E.V., Khomenko, T.M., Korchagina, D.V., Volcho, K.P., Salakhutdinov, N.F. (2009). Natural Mont-morillonite Clay as Prebiotic Catalyst. Paleont. J. 43, 958–964. DOI: 10.1134/S0031030109080139.

22. Il’ina, I.V., Volcho, K.P., Korchagina, D.V., Barkhash, V.A. & Salakhutdinov, N.F. (2007). Transformations of (–)-Myrtenal Epoxide over Askanite–Bentonite Clay. Rus. J. Org. Chem. 43, 56–59. DOI: 10.1134/S1070428007010058.

23. Wróblewska, A., Makuch, E. & Miądlicki, P. (2016). The studies on the limonene oxidation over the microporous TS-1 catalyst. Catal. Today, 268, 121–129. DOI: 10.1016/j.cattod.2015.11.008.

24. Marino, D., Gallegos, N.G., Bengoa, J.F., Alvarez, A.M., Cagnoli, M.V., Casuscelli, S.G., Herrero, E.R. & Marchetti S.G. (2008). Ti-MCM-41 catalysts prepared by post-synthesis methods: Limonene epoxidation with H2O2. Catal. Today. 133–135, 632–638. DOI: 10.1016/j.cattod.2007.12.111.

25. Wróblewska, A. (2014). The epoxidation of limonene over the TS-1 and Ti-SBA-15 catalysts. Molecules. 19, 19907–19922. DOI: 10.3390/molecules191219907.

26. Pinto, L.D., Dupont, J., de Souza, R.F., Bernardo-Gusmão, K. (2008). Catalytic asymmetric epoxidation of limonene using manganese Schiff-base complexes immobilized in ionic liquids. Catal. Comm. 9, 135–139. DOI: 10.1016/j.catcom.2007.05.025.

27. Bussi, J., López, A., Peña, F., Timbal, P., Paz, D., Lorenzo, D. & Dellacasa, E. (2003). Liquid phase oxidation of limonene catalyzed by palladium supported on hydrotalcites. Appl. Catal. A: General 253, 177–189. DOI: 10.1016/S0926-860X(03)00519-2.

28. Ali, B., Al-Wabel, N.A., Shams, S., Ahamad, A., Khan, S.A. & Anwar, F. (2015). Essential oils used in aromatherapy: A systemic review. APJTB 5, 601–611. DOI: 10.1016/j.apjtb.2015.05.007.

29. Chen, T.C., Fonseca, C.O.D. & Schönthal, A.H. (2015). Preclinical development and clinical use of perillyl alcohol for chemoprevention and cancer therapy. Am. J. Can. Res. 5, 1580–1593.

30. Li, C.D., Sablong, R.J. & Koning Cor, E. (2016). Chemoselective Alternating copolymerization of limonene dioxide and carbon dioxide: a new highly functional aliphatic epoxy polycarbonate. Angew. Chem. 128, 11744–11748. DOI: 10.1002/anie.201604674.

31. Morinaga, H. & Sakamoto, M. (2017). Synthesis of multi-functional epoxides derived from limonene oxide and its application to the network polymers. Tetrahedron Lett. 58, 2438–2440. DOI: 10.1016/j.tetlet.2017.05.021.

32. Linnekoski, J.A., Asikainen, M., Heikkinen, H., Kaila, R. K., Räsänen, J. & Harlin A. (2014). Production of p-cymene from crude sulphate turpentine with commercial zeolite catalyst using a continuous fixed bed reactor. Org. Process Res. & Dev. 18, 1468–1475. DOI. 10.1021/op500160f.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 445 445 42
PDF Downloads 150 150 16