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Effectiveness factor of two-dimensional ring-shaped catalyst pellets
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The use of hollow catalytic support improves the utilization of the catalytic material because of the absence of 
the pellet core, and moreover ensures  low reactor pressure drop owing to enhanced bed voidage. In this study, 
the expressions for the effi cient computation of the effectiveness factor are derived for a ring-shaped catalyst pel-
let undergoing fi rst-order irreversible reaction. The methodology consists of using solutions of one-dimensional 
problems to remove non-homogeneous boundary conditions. The expressions obtained exhibit signifi cantly faster 
convergence behavior than those reported in literature. The shape parameters, namely, the height-to-diameter ratio 
and the inner-to-outer radii ratio, signifi cantly affect the catalyst utilization, such that several-fold improvement in 
the effectiveness factor is achievable.
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INTRODUCTION

             The effective use of a catalytic material is an important 
challenge for the successful design and scale-up of any 
heterogeneous reactor system. A portion of the catalytic 
material, mainly toward the core of the pellet, usually 
remains unused owing to the intra-particle diffusional 
resistance. The simplest solution to this challenge is to 
use a small catalytic support to ensure a large specifi c 
surface area; this solution can help lower the effect of 
the internal diffusional resistance, thus leading to a high 
effectiveness factor and an improved utilization of the 
catalytic material. The approach is simple but leads to 
high pressure drops when implemented on an actual 
large-scale industrial heterogeneous reactor, thereby 
ultimately translating into unacceptably high energy costs. 
Therefore, any strategy for the effective utilization of 
the catalytic material must also simultaneously address 
the issue of the high pressure drop in heterogeneous 
catalytic reactors.

The enhancement in the effectiveness factor has at-
tracted signifi cant attention in literature. For example, 
a non-uniform distribution of the catalytic material is 
one of the strategies proposed in the literature1–6. How-
ever, the successful implementation of such a strategy 
in an actual reactor is challenging. Another approach 
suggested involves a careful design of the structure of 
the catalyst matrix by mixing materials of two differ-
ent diffusivities. The low diffusivity material with small 
pore sizes affords large surface areas, but their utility 
is limited because of the high internal mass transport 
resistances. An optimized addition of materials of high 
diffusivity with controlled pore size and porosity can 
nonetheless substantially improve the utilization of the 
porous catalytic material7–10. Both strategies mentioned 
in the foregoing require careful design and repeated tri-
als prior to actual implementation. Another recent study 
clearly showed that the conversion level in a fi xed bed 
reactor can be signifi cantly enhanced by simply using 
a hollow non-spherical catalytic support11. The enhance-
ment in the effectiveness factor for the case of a hollow 
support is obvious, as the removal of the interior of the 
catalyst pellet, which cannot be accessed by the reactant 
in a diffusion-controlled reaction, ensures an improved 
utilization of the catalytic material while generating an 

additional surface that further augments the transport 
of the reactant inside the catalyst.

In addition to high conversion, the pressure drop, 
which is of paramount importance to the operation of 
any industrial heterogeneous fi xed-bed reactor, is also 
substantially lowered because of the enhanced bed void 
fraction of the fi xed bed containing hollow packing. Any 
increase in the bed void fraction, however small, leads 
to a substantial pressure-drop reduction in the fi xed-bed 
reactors owing to a strong dependence of the pressure-
drop on the bed void fraction. Therefore, the lowering 
of the pressure drop along the reactor length also helps 
improve the conversion level in gas-phase reactions12. 
Moreover, strategies for enhancing the effectiveness 
factor suggested that the spherical support can be easily 
extended to a hollow non-spherical support. 

With the advantages inherent to hollow, non-spherical 
shapes, several examples of their applications are found in 
industrial practice, such as LP Series rings from DuPont 
(MECS® catalysts) in the production of sulfuric acid and 
ammonia decomposition catalyst from Pingxiang Hual-
ian13, 14. Several ring-shaped catalysts are available from 
Haldor Topsoe 15. Examples of these catalysts are TK-250 
for hydrogenenation, HTG-1 used in chlorine absorption 
for feed purifi cation, SSK-10 sour shift catalyst, CK-322 
and CK-428 for VOC removal, PK-5 and PK-7R for con-
version of carbon oxides to methane, TK-222 for treating 
tail gases derived from Claus or similar units, TK-335 
and TK-337 for diesel and renewable fuel hydro-treating, 
and RKS-2 and RKA-02 for secondary and auto-thermal 
reforming. Similarly, secondary reforming catalyst series, 
namely, NIAP-20 (19.5 mm × 14 mm × 8.5 mm) and 
NIAP-20-01 (14.5 mm × 12 mm × 6.5 mm), and primary 
reforming catalyst, NIAP-18 (14.5 mm × 12 mm × 6.5 
mm), are available from Matros Technologies16. Several 
other examples of the use of ring-shaped catalyst pellets 
are found in actual industrial practice. 

Despite the numerous applications of non-spherical 
hollow catalysts in process industries, attempts to rig-
orously model their behavior are scarce. Only recently, 
Asif11 presented a heterogeneous model using hollow 
cylindrical catalyst for ethylene oxidation. A signifi cant 
reduction in the catalyst requirement as well as the pres-
sure drop was noted. Moreover, a retrofi tting strategy 
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based on the use of hollow non-spherical biocatalyst for 
glucose isomerization was recently conducted17. The shape 
parameters of the biocatalyst were found to signifi cantly 
infl uence the performance level of the reactor. 

The heterogeneous reactor modeling containing even 
a simple hollow support matrix is an easy task because 
it requires the solution of a two-dimensional partial 
differential equation that governs the concentration 
distribution in the catalyst matrix. This solution should 
then be coupled with the fl uid-phase reactant concentra-
tion distribution to predict the behavior of the reactor. 

In the present study, an effi cient analytical expression is 
derived to evaluate the potential of ring-shaped catalyst 
pellets in enhancing the conversion in heterogeneous 
reactors. This enhancement will obviate the need to 
develop codes for the solution of two-dimensional par-
tial differential equations, which is often extremely time 
consuming and requires high-level mathematical skill. 
The case of linear kinetics is considered in the following 
parts, and effi cient analytical expressions for the effec-
tiveness factor are developed. The enhancement in the 
effectiveness factor caused by the use of the ring-shaped 
catalyst pellet is systematically investigated in terms of its 
relevant shape parameters. The results of such a study 
can be immediately used to retrofi t and optimize the 
shape of the support geometry and thus enhance the 
conversion level in the heterogeneous reactor.

MATHEMATICAL MODEL AND SOLUTION 
APPROACHES

A simple schematic of a two dimensional ring-shaped 
catalyst pellet is shown in Figure 1. The steady state 
concentration profi le of a reactant in such a geometry 
with a fi rst-order irreversible chemical reaction is given by
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where v, ρ, and ξ are dimensionless variables represent-
ing concentration distribution, radial, and axial distances, 

respectively. κ and γ are characteristic shape parameters 
of the catalyst pellet;   is the Thiele modulus; Co is the 
bulk concentration of the reactant at the surface of the 
catalyst pellet; H is the height; Ri and Ro are the inner 
and outer radii, respectively; Dr and Dz are the effective 
diffusivities of the reactant in the radial and longitudinal 
directions, respectively; k1 is the fi rst-order rate constant.

Analytical solutions of the abovementioned two-
dimensional partial differential equation and evaluation 
of effectiveness factors have been investigated. Most 
analytical expressions involve the summation or prod-
uct of one or more infi nite series. For some parameter 
values, the series can exhibit a convergence problem. 
Such series convergence issues related to the evaluation 
of the effectiveness factor can add further constraints 
to the already-complex heterogeneous reactor modeling. 
While remedial solutions to convergence problems can 
be sought in different ways, the methodology used to 
obtain the solution itself nonetheless primarily affects 
their convergence behavior. Asif18 showed that expres-
sions obtained using a particular solution approach yields 
a substantially faster convergence behavior than all other 
analytical expressions proposed in literature. The same 
methodology is extended to the case of the fi nite hol-
low cylindrical catalyst pellet in this study. The method 
consists of using the particular solution to remove the 
non-homogeneity associated with boundary conditions. 
The analytical expressions obtained are then compared 
with other expressions reported in literature.

On the one hand, the non-homogeneous boundary 
conditions can be removed by the particular solution 
approach. If the particular solution based on the so-
lution of an infi nite hollow cylinder is used, then the 
non-homogenous boundary conditions (2a) and 2(b) can 
be removed. On the other hand, the non-homogenous 
boundary conditions represented by (2c) and (2d) can 
be removed through the particular solution based on 
the solution of an infi nite disk. Both approaches, termed 
as Approach 1 and Approach 2, are considered in the 
following sections.

Approach 1
The governing differential equation for a one-dimen-

sional infi nite hollow cylinder is given by
21
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The solution of Eqs. (4a)–(4c) can be given by

 (5a)

where

 (5b)
while Ij and Kj are jth order modifi ed Bessel function of 
the fi rst and second kinds, respectively. Introducing the 
following substitution

     1 1, ,v v        (6) to Eqs. (1) and (2) yieldsFigure 1. A simple geometrical representation of a two-
dimensional ring-shaped catalyst pellets fi nite hollow 
cylinder
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Using the method of the separation of variables19, the 

solution of Eqs. (7) and (8) can be given as

 (9)

where n  are roots of

 (10)
In this study, Y0 is the Bessel function of the second 

kind, and
 (11a)

 (11b)

 (12)

The substitution of Eqs. (5a) and (9) in Eq. (6) yields 
the complete solution shown as follows:

 (13)

To evaluate the effective utilization of the catalytic 
pellet, the catalyst effectiveness factor is invariably used. 
In the present case, the factor can be written as 

 (14)

For convenience, the value can be expressed as the 
sum of two contributions shown as follows:

 (15)
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where
 (17)

In this study,  is the effectiveness factor for an 
infi nite hollow cylinder.

Approach 2
The governing differential equation for an infi nite 

disk is given by
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The abovementioned problem is divided into two 

parts in such a way that only one non-homogeneous 
boundary condition is retained by the each individual 
part. As a result, 
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will require less number terms and thus will ensure fast 
convergence. The truncation of the series introduces an 
error in the computed value of the effectiveness factor. 
In the present case, the percentage error is defi ned as 
follows:

% 100actual computed

actual

Error
 


 

  
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 (36) 

The results are presented in Figures 2 to 4. κ is kept 
at 0.5, which means that the inner radius is half of the 
outer one, whereas three different values for γ (= 0.1, 
1, and 10) are chosen. The value of the Thiele modulus 
  is 10 in these fi gures. The Thiele modulus is defi ned 
using the characteristic length Vp/Sp shown as follows:

 (37)

where
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and  are the roots of cos( ) = 0, such that 

 (29b).

Therefore, the solution of Eq. (22) and associated 
boundary conditions is given as

 (30)

The effectiveness factor for an infi nite disk is given as

 (31)

Therefore, the effectiveness factor using this approach 
can be written as

 (32)

RESULTS AND DISCUSSION

Convergence effi  ciency
As discussed previously, different solution methodo-

logies have been suggested for such problems in litera-
ture. Making discrete Fourier sine expansion of , 
Wijngaarden et al.20 fi rst derived the expression for the 
concentration distribution, which was integrated to obtain 
the following expression for the effectiveness factor,

 (33)

where

 (34a)

 (34b)

On the other hand, Gunn21 used the standard decom-
position approach for deriving the effectiveness factor 
expression, which shows slow convergence behavior, 
because the mathematical technique used is probably 
not suitable to address the present non-homogeneous 
problem. His expression of the effectiveness factor can 
be simplifi ed as follows:

 (35)

To examine the convergence effi ciency of different ana-
lytical expressions for the effectiveness factor, its value, 
for a given value of the Thiele modulus, is computed by 
taking different numbers of terms in the series expan-
sion. The effi cient expression for the effectiveness factor 

Figure 2. Convergence effi ciency of effectiveness factor expres-
sions for γ = 0.1, κ = 0.5, Ф = 10, η = 0.0972

Figure 3. Convergence effi ciency of effectiveness factor expres-
sions for γ = 1, κ = 0.5, Ф = 10, η = 0.0979

Figure 4. Convergence effi ciency of effectiveness factor expres-
sions for γ = 10, κ = 0.5, Ф = 10, η = 0.0997
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The abscissa here is the number of terms used in the 
summation of the infi nite series. In cases where roots of 
the cosine as well as the Bessel function are required, 
an equal number of both roots are considered for ease 
of presentation. On the one hand, for a small value of 
parameter γ (= 0.1) in Figure 2, when the cylinder will 
resemble a disk, the fastest convergence is observed 
for Approach 2 (Eq. (32)). Even with two terms of the 
series, a solution of reasonable accuracy is obtained. This 
result is expected because Eq. (32) uses one-dimensional 
disk solution as the particular solution, which is in itself 
a good approximation of the problem at hand. On the 
other hand, Figure 3 presents the case for γ = 1. The 
convergence behavior of Eq. (16) is the best, while Eq. 
(32) shows a better convergence than other expressions 
reported in literature. The case of a high γ (=10) is 
presented in Figure 4. The geometry resembles a long 
cylinder. Therefore, the convergence is obviously fastest 
for the case of Approach 1 (Eq. 16), where the particular 
solution is based on the solution of an infi nite hollow 
cylinder. In this case, even a single term of the series 
is suffi cient for a solution of reasonable accuracy. The 
other schemes in the fi gure are obviously signifi cantly 
slower. All these results clearly show that the accuracy 
of the simplifi ed Gunn’s expression, represented by Eq. 
(35), is at best comparable to Eq. (32). By contrast, Eq. 
(33) shows a poor convergence behavior.

The data of Figure 3 are also presented in Table 1 for 
clarity. Eq. (16) shows the best convergence behavior, 
followed by Eq. (32). On the contrary, the error associated 
with Eq.(35) is high. The poor convergence behavior of 
Eq. (33) is also clearly evident in this part. Therefore, the 
particular solution-based approach shows a signifi cantly 
better convergence behavior than the other approaches 
proposed in literature. The superiority of the particular 
solution-based approach has been demonstrated earlier 
in the context of a solid cylinder as well 18. With regard 
to the choice of the two approaches discussed in this 
paper, the solution strategy itself shows that Approach 
1 shows a faster convergence behavior than Approach 
2 for fi nite long hollow cylinders. This fi nding is due to 
that the effectiveness factor is computed as a departure 
from the case of an infi nite hollow cylinder. Meanwhile, 
the use of the analytical expression based on Approach 2 
shows a superior convergence behavior for short hollow 
cylinders, as the effectiveness factor in this case is com-
puted as a departure from the case of an infi nite disk.

Eff ect of shape parameters on eff ectiveness factor
At this stage, examining the effect of shape parameters 

on the effectiveness factor while keeping the amount or 
the volume of the pellet fi xed is important. This statement 
means that, for a given amount of the catalytic material, 
the effect of the variation of the catalyst geometry on 
its utilization is analyzed. Toward this end, the Thiele 

modulus is defi ned using the equivalent volume diameter 
shown as follows

1

4V V
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k D
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where DV is the equivalent volume diameter defi ned by

 (39)

The dependence of the effectiveness factor on the 
Thiele modulus is shown in Figure 5a for different values 
of γ and a fi xed value of κ = 0.5, which corresponds to 
a hollow cylinder with an internal-to-external diameter 
ratio of 0.5. The effectiveness factor of the sphere is 
also presented in the fi gure for comparison. A hollow 
cylindrical shape clearly substantially increases the ef-
fectiveness factor of the catalyst pellet. The shape pa-
rameter γ plays an important role in this connection. The 
general trend shows that a greater departure of γ from 
unity results in a high effectiveness factor. This fi nding 
can be clearly observed in Figure 5b. The ordinate in 
this fi gure is defi ned as
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% hollow cylind sphere
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Table 1. Percentage errors associated with number of terms for different expressions presented in Figure 3

Figure 5b. Percent improvement in eff ectiveness factor as function 
of Thiele modulus and γ (κ = 0.5)

Figure 5a. Dependence of eff ectiveness factor on the Thiele 
modulus for κ = 0.5



104 Pol. J. Chem. Tech., Vol. 19, No. 3, 2017

All curves show a minimum, which tends to progressively 
shift toward a low γ as the value of κ decreases. κ is in 
fact a measure of the thickness of the hollow cylinder. 
A high κ means a thin hollow cylinder. A small κ repre-
sents a hollow cylinder whose inner diameter is very small 
compared with the outer one, which will be effectively 
similar to a solid cylinder. This fi nding means that the 
minimum value of the effectiveness factor will occur for 
a solid cylinder. As κ increases, the effectiveness factor 
always shows an increase for all values of γ. However, 
the difference is pronounced for long hollow cylinders. 
For short hollow cylinders, the change in κ does not 
make a signifi cant difference unless they are very thin.

CONCLUSION

The present strategy of using a particular solution to 
eliminate the non-homogeneity in the boundary condi-
tions clearly yields effi cient expressions for the effective-
ness factor for a fi nite hollow cylindrical catalyst pellet 
undergoing fi rst-order irreversible reaction. This fi nding 
is due to that the case of fi nite hollow cylindrical ge-
ometry is treated as a departure from its corresponding 
infi nite case, which is either an infi nite hollow cylinder 
or a disk. This result explains the improved convergence 
behavior of Eq. (16) for long hollow cylinders and Eq. 
(32) for rings. The comparison also shows that, unless 
γ is signifi cantly less than unity, Eq. (16) shows a better 
convergence behavior than Eq. (32). 

The effect of shape parameters, namely, γ and κ, on 
the effectiveness factor is signifi cant on the effective-
ness factor of the pellet. A choice of these parameters 
can result in several-fold increases in the effectiveness 
factor as compared with those obtained with a spherical 
shape or a solid cylindrical shape for a fi xed volume 
of the catalytic material. On the one hand, as far as 
the effect of γ on the effectiveness factor is concerned, 
a minimum is observed to be close to unity for low 
values of κ. Therefore, long cylinders as well as short 
rings are equally effective for an improved utilization 
of the catalyst mass. On the other hand, a large κ is 
highly effective in enhancing the effectiveness factor. 
Choosing a large κ however presents practical problems 
due to the thinness of the catalyst pellet, which will be 
more prone to breakage when used as packing during 
reactor operation.

The improvement in the effectiveness factor is as high 
as 300% for long hollow cylinders, compared with a solid 
sphere for the same volume of the catalytic material. 
A solid cylinder with γ=1 yields an improvement of 
nearly 10% over that of a sphere. However, the same 
value increases nearly sevenfold for a hollow cylinder. 
The curves in Figure 5b generally show an increasing 
trend with the increase in the Thiele modulus. This fi n-
ding is due to that the internal mass transfer resistance 
becomes increasingly important at high Thiele modulus. 
Therefore, the full potential of a hollow catalyst pellet 
is realized when the diffusional or the internal mass 
transfer resistance is important.

The dependence of the effectiveness factor on γ is 
shown in Figure 6 for different Thiele moduli and fi xed 
κ. The fi gure shows that the effectiveness factor decreases 
as the Thiele modulus increases. This fi nding is a clear 
indication that the internal mass transfer resistance in-
creases with the increase in the Thiele modulus, thereby 
leading to a decrease in the effectiveness factor. This 
issue is a main interest in the design of heterogeneous 
reactors, as a decrease in effectiveness is a measure of 
a decrease in the effective utilization of the catalyst 
being used for the conversion. This result consequently 
leads to a decrease in the conversion level of the reactor. 
Figure 6 highlights the effect of γ on the effectiveness 
factor. The total volume of the catalyst pellet is held 
constant for a fi xed value of the Thiele modulus in this 
case. Therefore, the change in the effectiveness factor 
is solely due to the variation in γ. Notably, all curves 
show a minimum, which tends to occur when the γ ratio 
is close to unity. However, a close look on the fi gure 
reveals that these curves are asymmetrical around the 
unity. When κ = 0.5, the effectiveness factor is slightly 
higher for γ = 0.01 than that for γ = 100. The curve 
for κ = 0.9 is also shown for the Thiele modulus of 10. 
The effectiveness factor is high for high κ under the 
same Thiele modulus. However, a shift occurs in the 
minimum toward a low γ. A low value of γ represents 
a hollow ring, whereas a large value of the same repre-
sents a long hollow cylinder. From a design standpoint, 
such a geometrical confi guration of the catalyst shape 
is therefore recommended for achieving a high degree 
of conversion.

The effect of the shape parameter κ is highlighted in 
Figure 7, which depicts the dependence of the effective-
ness factor on γ for different values of κ when v = 20. 

Figure 6. Dependence of the effectiveness factor on γ for 
different values of the Thiele modulus (v)

Figure 7. Dependence of the effectiveness factor on the γ 
for different values of κ = 0.5 and a fi xed Thiele 
modulus (v = 20)
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NOMENCLATURE

C – Concentration of reactant in the catalyst pellet
C0 – Concentration of reactant at the surface of the 
   catalyst pellet
Dr – Reactant diffusivity in the radial direction
Dv – Volume equivalent diameter of a non-spherical 
   particle defi ned by Eq. (39)
Dz – Reactant diffusivity in the axial direction
H – Height of the catalyst pellet
k1 – First order rate of reaction

 –  defi ned 
   by Eq. (5b)
v1 – Particular solution defi ned by Eq. (5a)
v2 – Particular solution defi ned by Eq. (20)

 –  defi ned 
   by Eq. (17)
r – Radial coordinate
Ri – Inner radius

 –  defi ned 
   by eq. (11b)
Ro – Outer radius
Sp – Surface area of the catalyst particle
v – Dimensionless reactant concentration in the 
    pellet defi ned by Eq. (3)
Vp – Volume of the catalyst particle
z – Axial coordinate 

Greek Symbols
  – Roots of 

  – Roots of  cos 0n   given as 
 2 1

2
n 


κ – Ratio of inner to outer radii as defi ned 
   in Eq. (3)
  – Thiele modulus defi ned in Eq. (3)

V  – Thiele modulus defi ned in Eq. (38)
  – Thiele modulus defi ned using (Vp/Sp) as the 
   characteristic dimension in Eq. (37)
  – Ratio defi ned in Eq. (3) that equals ratio 
   (H/2Ro) for isotropic catalyst pellet
  – Parameter defi ned by Eq. (11a)
  – Effectiveness factor
  – Parameter defi ned in Eq. (29a)
  Dimensionless radial coordinate defi ned 
 by Eq. (3)
  Dimensionless axial coordinate defi ned 
 by Eq. (3)

 –  defi ned by Eq. (34b)

 –  defi ned by Eq. (34a) 

Subscripts
1 – Refers to Method/Approach 1
2 – Refers to Method/Approach 2
M – Refers to the number of root in the series 
    summation

N – Refers to number to root in the series summation
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