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The objective of this work was preparation of activated carbon from spent dregs for carbon dioxide adsorption. 
A saturated solution of KOH was used as an activating agent. Samples were carbonized in the furnace at the 
temperature of 550oC. Textural properties of activated carbons were obtained based on the adsorption-desorption 
isotherms of nitrogen at –196oC and carbon dioxide at 0oC. The specifi c surface areas of activated carbons were 
calculated by the Brunauer – Emmett – Teller equation. The volumes of micropores were obtained by density 
functional theory method. The highest CO2 adsorption was 9.54 mmol/cm3 at 0oC – and 8.50 mmol/cm3 at 25oC.
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INTRODUCTION

The development of industry and civilization has 
contributed to improving the quality of social life. 
Unfortunately, over the years the negative effects of 
anthropogenic activities have been more pronounced 
including global warming. Recent reports indicate that 
in the years 1901–2012 there was an increase in an aver-
age global temperature of approximately 0.89oC, with an 
increase of 0.72oC in the years 1951–20121–6. 

The consequences of global warming cause serious and 
irreversible changes such as the melting of ice shelves and 
raising sea levels, thus counteracting the effects of global 
warming has become an important issue of environmental 
policy and has contributed to  the establishment of the 
IPCC7. According to the Kyoto Protocol (1988), the 
main culprits inducing the global temperature increase 
are: carbon dioxide, methane, nitrogen oxide, hydrofl uo-
rocarbons, perfl uorocarbons, sulfur hexafl uoride, which 
absorb infrared radiation emitted by the land surface8. 

Most responsible for increasing the concentration of 
carbon dioxide are power plants, refi neries, chemical, 
petrochemical, steel and cement industries. Great efforts 
have been directed towards fi nding new approaches for 
CO2 sor bents such as activated carbons9–14 and other 
carbonaceous materials15, zeolites16–18, metal–organic 
frameworks19–21, porous polymers22–24, and others25–27. 
Photocatalytic CO2 reduction into green solar fuels such 
as methane, formic acid, formaldehyde and methanol28–33 
has been known as the most promising technology. The 
generation of energy from non-fuel sources such as 
hydrogen34–38, nuclear energy and renewable energy5, 39 
is also very important. Much work has been done in 
methane utilization. Good CH4 sorbents are very im-
portant because methane can  be an alternative fuel 
vehicle40. The main possibility to reduce CH4 emission 
is methane conversion to more valuable products such 
as formaldehyde 41– 43, syngas via dry reforming44, metha-
nol41, 43, 45, 46, methyl bisulphate47–52, carbon nanotubes53–58, 
hydrogen35, 59–61.

Nowadays, one of the most popular options of the 
mitigation of carbon dioxide emission is the amine- 
based chemical absorption, the most commonly used 
absorbent is MEA5, 39,  62. However, this technique has 

serious drawbacks such as high energy penalty, volatility 
of the amines, solvent and regeneration cost or equipment 
corrosion, and therefore alternative approaches are still 
desirable5, 6, 62. There are several ways to reduce carbon 
dioxide emissions from the use of separation methods: 
pre-combustion, post-combustion, oxy-fuel combustion 
or chemical looping combustion62. Among them for 
particular interest deserve the post-combustion strategy, 
 including adsorption processes63. 

In general, highly attractive CO2 sorbents are carbo-
naceous materials, especially activated carbons because 
of their easy-to-design pore structure determining high 
adsorption capacity and large specifi c surface area, 
selectivity, uncomplicated regeneration of the materials 
and insensitive to moisture5, 6, 62–64.Various properties of 
activated carbons are caused mainly by the activation 
conditions and used reagents65, 66. Activated carbons 
are very good sorbents of gases9–14, 40, 67, 68, organic69, 70 
and inorganic water pollutants71, 72, but can be used as 
catalyst supports73 or even catalysts74, 75. 

In order to reduce that costs, waste or different raw 
materials are used to obtain activated carbons (ACs). 
More economical and environmentally friendly is to use 
waste material5,  76,   77. To date, it has been reported that 
activated carbons have been prepared from agricultural 
residues such as sawdust76, coconut shell78, olive stone79, 
beet molasses12, fungi80, corn syrup76, 81, kraft lignin82 , 
ebony wood83, 84, mahogany wood82 and food waste85, 86. 

The main objective of my work was to evaluate the 
utility of waste spent dregs as an abundant and acces-
sible precursor for activated carbon production at low 
carbonization temperature of 550oC. Potassium hydroxide 
was used as the activating agent. 

MATERIAL AND METHODS 

Preparation of activated carbon
The material used for activated carbon production was 

coffee (CG), tea (TG), mint (MG) and rock rose (RG) 
grounds. Grounds were mixed with a saturated solution 
of potassium hydroxide at 1:1 values of the mass ratio. 
Mixtures were left for 1h at room temperature. Then 
they were dried at 200oC for 19 h. The next step was 
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carbonization of all samples at 550oC for 1h under nitro-
gen gases. Carbonization was performed in a horizontal 
oven under insert gas fl ow of 15l/h. Activator potassium 
hydroxide was removed by washing samples with deion-
ized water and a solution 1M HCl and after that again 
with deionized water until neutral pH was obtained for 
all samples. After washing activated carbons were dried 
at a temperature 200oC for 19 h. After this time the 
material was grounded into powder and tested.

Characterization of activated carbons

Textural characterization
The specifi c surface area and porous texture charac-

terization of all the ACs was carried out by physical N2 
adsorption and desorption at –196oC using, a Quadrasorb 
automatic system (Quantachrome Instruments). Before 
the analysis samples were degassed overnight (16 h) 
under high vacuum of 1 × 10–6 mbar at 250oC. The 
Brunauer–Emmett–Teller (BET) equation was used to 
determine surface areas (SBET). The total pore volume 
(Vtot) was determined at relative pressure (p/p0 = 0.99). 
The volume of micropore (Vmic(N2)) in the range of 1.8– 
–2 nm was obtained using the density functional theory 
(DFT). The volume of micropore (Vmic (CO2)) in the 
range of 0.3–1.4 nm and submicropore (Vsubmic(CO2))
in the range of 0.3–0.8 nm was obtained using DFT.

CO2 adsorption 
Carbon dioxide sorption measurements were performed 

using a Quadrasorb automatic system (Quantachrome 
Instruments). Before analysis samples were degassed at 
250oC under high vacuum of 1 × 10−6 mbar and CO2 
was adsorbed at 0oC and 25oC. 

Scanning electron microscopy (SEM)
Scanning electron microscopy (SEM) – (model UHR 

FE-SEM Hitachi SU8020 was used to investigate the 
morphology of the activated carbons.

RESULTS AND DISCUSSION 

The porosity and the accessibility of the active centers 
have a paramount importance for the adsorption per-
formance. To evaluate the positive effects of the applied 
modifi cations, the porous structure of the materials was 
studied. Surface area, submicropore volume, micropore 
volume from CO2 and N2 and total pore volume of 
activated carbons derived from BET measurements are 
presented in Table 1. Chemical activation with solid KOH 
gave interesting results from the porosity development 
point of view. The values obtained for the total pore 
volume were 0.25–0.30 cm3/g, the micropore volume 
on the basis of N2 adsorption were 0.20–0.22 cm3/g, the 
submicropore volume in the range of 0.08 to 0.11 cm3/g 
and the micropore volume of narrow pores (0.3–1.4 nm) 

ranged from 0.10 to 0.15 cm3/g. Total surface area (BET) 
values were within the range of 536–618cm2/g. The TG 
sample had a relatively high surface area and large mi-
cropore volume. Activated carbons were sorbents with 
a very well developed porosity. For the RG, CG, TG 
samples the percentage of micropores was more than 
67% of all developed pores.

Adsorption and desorption isotherm plots of nitrogen 
for CG, TG, MG and RG are shown in Figure 1. The 
curves of adsorption isotherms increased sharply at low 
relative pressure and gradually increased at maximum 
relative pressure. These curves showed a mix of the type 
I and IV isotherm, characteristic for the micropores 
and mesopores. The formation of hysteresis loops at 
relative pressure higher than 0.45 indicated the es-
sential multilayer adsorption process characterizing the 
mesoporous structures. The hysteresis loops for CG 
and TG samples was type H4 hysteresis which is also 
often associated with narrow slit pores. For RG and 
MG hysteresis loops were type H3 which suggests that 
the internal porosity of the activated carbons primarily 
is slit-shaped and panel-shaped. 

Figure 1. Adsorption and desorption isotherm of nitrogen

Table 1. Textural characteristics of activated carbons

The pore size distribution measured by physical N2 
adsorption-desorption are presented in Figure 2. Pore 
volume decreased gradually with an increase in pore 
diameter. Mesopores in the range of 2–2.5 nm were 
mainly present in materials. Mesopores higher than 5 
nm were not observed. These pores were created by 
the release of non-carbon components such as N and 
O during carbonization process with the KOH activat-
ing agent using.

Figure 3 shows the pore size distribution curves of RG, 
CG, TG, MG calculated on the basis of CO2 adsorp-
tion at the temperature of 0oC. Narrow micropore size 
distribution curves were similar. Three dominant peaks 
were observed for all the materials. One was located in 
the range of 0.20–0.38 nm, the second in the range of 
0.45–0.70 nm and the last one in the range of 0.70–0.90 
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CO2 adsorption of RG, CG, TG and MG are shown in 
Figure 5. The activated carbon CG exhibited the highest 
adsorption capacity of CO2 compared to the other ACs. 
The adsorption value of CG was at 0oC–9.54 mmol/cm3 
and at 25oC–8.50 mmol/cm3. It is worth emphasizing that 
the presence of KOH during activation is associated with 
developing microporosity of activated carbons. Some 
authors suggest the importance of submicropores on 
CO2 adsorption of CO2. Recently, some authors studied 
the validity of submicropores of CO2 adsorption87–89.On 
the basis of Figure 2 it was assumed that the highest 
and the most signifi cant adsorption of CO2 took place 
in pores in the range of 0.7–0.9 nm. The pore volume 
in this range varied as follows CG> TG> RG> MG, 
and it was correlated with fl uctuation of CO2 adsorption.

nm. The sumbmicropores (pores up to 0.80 nm diameter) 
were dominant. 

The SEM pictures are presented in Figure 4. The 
surface of activated carbons is shown. Structures had 
an irregular shape. They had sharply defi ned edges. 
Macropores were very well visible, although they dif-
fered according to the size. CG showed much smaller 
macropores than fi gure RG.

Figure 2. Pore size distribution of activated carbons produced 
from different precursors calculated on the basis of 
N2 adsorption calculated by DFT method

Figure 3. Micropore size distribution curves of activated car-
bons from different precursors calculated on the basis 
of CO2 adsorption calculated with DFT method

Figure 4. SEM of activated carbons

Figure 5. Adsorption of CO2 at 0oC and 25oC on activated  
carbons

CONCLUSIONS

In recent years, low cost materials such as waste biomass 
have more often been used as a feedstock for environ-
mental, agricultural and industrial purposes. For example, 
spent dregs are one of the most widely available waste 
material in the world. Production of activated carbons 
from this materials is one of the possibilities for utiliza-
tion. Activated carbons were produced from the different 
spent dregs. Very low temperature (550oC) was applied in 
carbonization stage. Obtained results show that activated 
carbons were good CO2 sorbents. The maximum surface 
area was equal to 618 m2/g (TG). The most signifi cant 
adsorption of CO2 took place in pores in the range of 
0.7–0.9 nm. The highest CO2 adsorption at 0oC–9.54 
mmol/cm3 and at 25oC–8.50 mmol/cm3 was obtained 
for CG. The submicropore volume of activated carbons 
was in the range of 0.08 to 0.11 cm3/g, the micropore 
volume was in the range of 0.20–0.22 cm2/g, total pore 
volume was from 0.25 cm2/g to 0.30 cm2/g. This work 
shows that the activated carbons, obtained from differ-
ent spent dregs during low temperature carbonization, 
can be a possible alternative for the development of 
inexpensive adsorbents for environmental applications, 
such as CO2 capture.
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