Synthesis and antibacterial properties of Fe3O4-Ag nanostructures

Open access


Superparamagnetic iron oxide nanoparticles were obtained in the polyethylene glycol environment. An effect of precipitation and drying temperatures on the size of the prepared nanoparticles was observed. Superparamagnetic iron oxide Fe3O4, around of 15 nm, was obtained at a precipitation temperature of 80°C and a drying temperature of 60°C. The presence of functional groups characteristic for a polyethylene glycol surfactant on the surface of nanoparticles was confirmed by FTIR and XPS measurements. Silver nanoparticles were introduced by the impregnation. Fe3O4-Ag nanostructure with bactericidal properties against Escherichia coli species was produced. Interesting magnetic properties of these materials may be helpful to separate the bactericidal agent from the solution.

1. Xu, C. & Sun, S. (2007). Monodisperse magnetic nanoparticles for biomedical applications, polymer international. Polym. Int. 56(7), 821–826. DOI: 10.1002/pi.2251.

2. Leem, G., Sarangi, S., Zhang, S., Rusakova, I., Brazdeikis, A., Litvinov, D. & Lee, T.R. (2009). Surfactant-controlled size and shape evolution of magnetic nanoparticles. Cryst. Growth Des. 9(1), 32–34. DOI: 10.1021/cg8009833.

3. Chełminiak, D., Ziegler-Borowska, M. & Kaczmarek, H. (2015). Nanocząstki magnetytu powlekane polimerami do zastosowań biomedycznych Cz. II. Nanocząstki Fe3O4 z powłokami z polimerów syntetycznych. Polimery, 60(2), 87–94. DOI: 10.14314/polimery.2015.087.

4. Pikul, A.P. (2012). Wybrane zagadnienia z fizyki magnetyków. Wrocław. Uniwersytet Wrocławski.

5. Gupta, A.K. & Guptab, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021. DOI: 10.1016/j.biomaterials.2004.10.012.

6. Fang, W., Zheng, J., Chen, C., Zhang, H., Lu, Y., Mac, L. & Chen, G. (2014). One-pot synthesis of porous Fe3O4 shell/silver core nanocomposites used as recyclable magnetic antibacterial agents. J. Magn. Magn. Mater. 357, 1–6. DOI: 10.1016/j.jmmm.2014.01.024.

7. Chen, Y., Gao, N. & Jiang, J. (2013). Surface matters: enhanced bactericidal property of core–shell Ag–Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis. Small 9, 3242–3246. DOI: 10.1002/smll.201300543.

8. Brollo, M.E.F., López-Ruiz, R., Muraca, D., Figueroa, S. J.A., Pirota, K.R. & Knobel, M. (2014). Compact Ag@Fe3O4 core-shell nanoparticles by means of single-step thermal decomposition reaction. Sci. Rep. 4, 6839. DOI: 10.1038/srep06839.

9. Chełminiak, D., Ziegler-Borowska, M. & Kaczmarek, H. (2015). Nanocząstki magnetytu pokryte polimerami do zastosowań biomedycznych. Cz. I. Otrzymywanie nanocząstek Fe3O4 z powłokami z polisacharydów. Polimery 60(1), 12–17. DOI: 10.14314/polimery.2015.012.

10. Hariani, P.L., Faizal, Ridwan, M. & Marsi, Setiabudidaya, D. (2013). Synthesis and properties of Fe3O4 nanoparticles by co-precipitation method to removal procion dye. Int. J. Environ. Sci. Dev. 4(3), 336–340. DOI: 10.7763/IJESD.2013.V4.366.

11. Yana, H., Lipinga, Z., Weiweia, H., Xiaojuanb, L., Xiangnongc, L. & Yuxianga, Y. (2010). A Study on synthesis and properties of Fe3O4 nanoparticles by solvothermal method. Glass. Phys. Chem+ 36(3), 325–331. DOI: 10.1134/S1087659610030090.

12. Lu, A.H., Salabas, E.L. & Schth, F. (2007). Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Edit. 46(26), 1222–1244. DOI: 10.1002/anie.200602866.

13. Pérez, J.A.L. & Quintela, M.A.L. (1997). Advances in the preparation of magnetic nanoparticles by the microemulsion method. J. Phys. Chem. B 101(41), 8045–8047. DOI: 10.1021/jp972046t.

14. Kornak, R., Nižňanskỳ, D., Haimann, K., Tylus, W. & Maruszewsk, K. (2005). Synthesis of magnetic nanoparticles via the sol-gel technique. Mater. Sci. PL 23(1), 87–92.

15. Cai, W. & Wan, J., (2007). Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. J. Coll. Interf. Sci. 305, 366–370. DOI: 10.1016/j.jcis.2006.10.023.

16. Deng, H., Li, X., Peng, Q., Wang, X., Chen, J. & Li, Ya., (2005), Monodisperse Magnetic Single-Crystal Ferrite Microspheres. Angew. Chem. Int. Ed. 117, 2842–2845.

17. Xin, T., Ma, M., Zhang, H., Gu, J., Wang, S., Liu, M. & Zhang, Q. (2014). A facile approach for the synthesis of magnetic separable Fe3O4@TiO2, core–shell nanocomposites as highly recyclable photocatalysts. Appl. Surf. Sci. 288(1), 51–59. DOI: 10.1016/j.apsusc.2013.09.108.

18. Tan, L., Zhang, X., Liu, Q., Jing, X., Liu, J., Song, D., Hu, S., Liu, L. & Wang, J. (2015) Synthesis of Fe3O4@TiO2 core-shell magnetic composites for highly efficient sorption of uranium(VI). Coll. Surf. A. 469, 279–286. DOI: 10.1016/j.colsurfa.2015.01.040.

19. Ghazanfari, M., Johar F. & Yazdani, A. (2014). Synthesis and characterization of Fe3O4@Ag core-shell: structural, morphological, and magnetic properties. J. Ultrafine Grained Nanostruct. Mater. 118(47), 97–103.

20. Gong, P., He, H., Li, X., Wang, K., Hu, J., Tan, W., Zhang, S. & Yang, X. (2007). Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18(28). DOI: 10.1088/0957-4484/18/28/285604.

21. Zhang, D.H., Li, G.D., Lia, J.X. & Chen, J.S. (2008). Received one-pot synthesis of Ag–Fe3O4 nanocomposite: a magnetically recyclable and efficient catalyst for epoxidation of styrene. Chem. Commun. 29, 3414–3416. DOI: 10.1039/B805737K.

22. Moosavi, R., Afkhami, A. & Madrakian, T. (2015). A Simple cyanide sensing probe based on Ag/Fe3O4 nanoparticles. Anal. Chem. 5, 15886–15891. DOI: 10.1039/C4RA14806A.

23. Jäger, M., Schubert, S., Ochrimenko, S., Fischer, D., & Schubert, U.S. (2012). Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chem. Soc. Rev. 41, 4755–4767. DOI: 10.1039/C2CS35146C.

24. Wang, S.T., Yan, J.C. & Chen, L. (2005). Formation of gold nanoparticles and self-assembly into dimer and trimer aggregates. Mater. Lett. 59, 1383–1386. DOI: 10.1016/j.matlet.2004.12.045.

25. Mohai, M. (2006). XPS MultiQuant: a step towards expert systems. Surf. Interf. Anal. 38(4), 640–643. DOI: 10.1002/sia.2198.

26. Briggs, D., Grant, J.T. (2003). Surface analysis by auger and X-ray photoelectron spectroscopy in IM Publications and SurfaceSpectra Limited. Charlton Manchester.

27. Sadri, F., Ramazani, A., Massoudi, A., Khoobi, M., Tarasi, R., Shafiee, A., Azizkhani, V., Dolatyari, L. & Joo, S.W. (2014). Green oxidation of alcohols by using hydrogen peroxide in water in the presence of magnetic Fe3O4 nanoparticles as recoverable catalyst. Green Chem. Lett. Rev. 7(3), 257–264. DOI: 10.1080/17518253.2014.939721.

28. Li, C., Tan, J., Fan, X., Zhang, B., Zhang, H. & Zhang, Q. (2009). Magnetically separable one dimensional Fe3O4/P(MAA-DVB)/TiO2 nanochains: preparation, characterization and photocatalytic activity. Polymer 50, 1887–1894. DOI: 10.1016/j.ceramint.2014.11.064.

29. Shameli, K., Ahmad, M.B., Jazayeri, S.D., Sedaghat, S., Shabanzadeh, P., Jahangirian, H., Mahdavi, M. & Abdollahi, Y. (2012). Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int. J. Mol. Sci. 13(6), 6639–6650. DOI: 10.3390/ijms13066639.

30. Guo, F., Zhang, Q., Zhang, B., Zhang, H. & Zhang, L. (2009). Preparation and characterization of magnetic composite microspheres using a free radical polymerization system consisting of DPE. Polym. Phy. 50, 1887–1894. DOI: 10.1016/j.polymer.2009.02.023.

31. Wang, B., Wei, Q., Qu, S.H. (2013). Synthesis and characterization of uniform and crystalline magnetite nanoparticles via oxidation-precipitation and modified co-precipitation metod. Int. J. Electrochem. Sci. 8, 3786–3793.

32. Mandal, M., Kundu, S., Ghosh, S.K., Panigrahi, S., Sau, T.K., Yusuf, S.M. & Pal, T. (2005). Magnetite nanoparticles with tunable gold or silver shell. J. Coll. Interf. Sci. 286(1), 94–187. DOI: 10.1016/j.jcis.2005.01.013.

33. Ge, Y., Zhang, Y., He, S., Nie, F., Teng, G. & Gu, N. (2009). Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscal. Res. Lett. 4(4), 287–295. DOI: 10.1007/s11671-008-9239-9.

34. Prucek, R, Tuček, J., Kilianová, M., Panáček, A., Kvítek, L., Filip, J., Kolář, M., Tománková, K. & Zbořil, R. (2011). The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. Biomaterials 32(21), 4704–4713. DOI: 10.1016/j.biomaterials.2011.03.039.

35. Sondi, I. & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Coll. Interf. Sci. 275(1), 177–182. DOI: 10.1016/j.jcis.2004.02.012.

36. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ram, J.T. & Yacaman, M.J. (2005). The bactericidal effect of silver nanoparticles. Nanotechnology 16(10), 2346–2353. DOI: 10.1088/0957-4484/16/10/059.

37. Pal, S., Tak, Y.K. & Song, J.M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A Study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 73(6), 1712–1720. DOI: 10.1128/AEM.02218-06.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 395 395 49
PDF Downloads 126 126 23