Equilibrium and kinetic studies of sorption of 2.4-dichlorophenol onto 2 mixtures: bamboo biochar plus calcium sulphate (BC) and hydroxyapatite plus bamboo biochar plus calcium sulphate (HBC), in a fluidized bed circulation column

Open access

Abstract

Sorption studies were carried out to investigate removal of 2.4-dichlorophenol (2.4-DCP) from aqueous solution in a fluidized bed by two types of adsorbent mixtures: BC (Bamboo char plus Calcium sulphate), and HBC (Hydroxyapatite plus Bamboo char plus Calcium sulphate); both manufactured in ball shape. The main material bamboo char was characterized by FTIR, DTA and SEM. The adsorption experiments were conducted in a fluidized bed circulation column. Adsorption, isotherms and kinetic studies were established under 180 min operating process time, at different initial 2.4-DCP solution concentrations ranging from 5–10 mg/L, and at different flow rates ranging from 0.25–0.75 L/min. The data obtained fitted well for both the Langmuir and Freundlich isotherm models; indicating favorable condition of monolayer adsorption. The kinetics of both adsorbents complies with the pseudo second-order kinetic model. BC was proven a new effective composite and low cost adsorbent which can be applied in the field of wastewater treatment, and it can also play an important role in industry water treatment.

1. Tan, I.A.W, Ahmad, A.L. & Hameed, B.H. (2009). Adsorption isotherms, kinetics, thermod ynamics and desorption studies of 2.4.6-trichlorophenol on oil palm empty fruit bunch-based activated carbon. J. Hazard. Mater. 164(2–3), 473–482. DOI: 10.1016/j.jhazmat.2008.08.025.

2. Gao, R. & Wang, J. (2007). Effects of pH and temperature on isotherm parameters of chlorophenols biosorption to anaerobic granular sludge. J. Hazard. Mater. 145(3), 398–403. DOI: 10.1016/j.jhazmat.2006.11.036.

3. Hameed, B.H., Chin, L.H. & Rengaraj, S. (2008). Adsorption of 4-chlorophenol onto activated carbon prepared from rattan sawdust. Desalination 225(1–3), 185–198. DOI: 10.1016/j.desal.2007.04.095.

4. Aksu, Z. & Akpınar, D. (2000). Modelling of simultaneous biosorption of phenol and nickel(II) onto dried aerobic activated sludge. Sep. Purif. Technol. 21(1–2), 87–99. DOI: 10.1016/S1383-5866(00)00194-5.

5. Xuequan, Z., Xiankai, W., Huixiang, S. & Dahui, W. (2009). Adsorption of 2.4-dichlorophenol from aqueous solution onto microwave modified activated carbon: Kinetics and equilibrium. Trans. Tianjin Univ. 15(6), 408–414. DOI: 10.1007/s12209-009-0071-9.

6. Hamdaoui, O., Naffrechoux, E., Suptil, J. & Fachinger, C. (2005). Ultrasonic desorption of p-chlorophenol from granular activated carbon. Chem. Eng. J. 106(2), 153–161. DOI: 10.1016/j.cej.2004.10.010.

7. Yan, M., Naiyun, G., Wenhai, C. & Cong, L. (2013). Removal of phenol by powdered activated carbon adsorption. Front. Environ. Sci. & Eng. 7(2), 158–165. DOI: 10.1007/s11783-012-0479-7.

8. Sarkar, M. & Acharya, P.K. (2006). Use of fly ash for the removal of phenol and its analogues from contaminated water. J. Waste Manage. 26(6), 559–570. DOI: 10.1016/j.wasman.2005.12.016.

9. Abdel-Ghani, N.T., El-Chaghaby, G.A., Farag, S. & Helal, F.S. (2015). Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. J. Adv. Res. 6(3), 405–415. DOI: 10.1016/j.jare.2014.06.001.

10. Wang, J.P., Feng, H.M. & Yu, H.Q. (2007). Analysis of adsorption characteristics of 2.4-dichlorophenol from aqueous solutions by activated carbon fiber. J. Hazard. Mater. 144(1–2), 200–207. DOI: 10.1016/j.jhazmat.2006.10.003.

11. Mohd Din, A.T., Hameed, B.H. & Ahmad, A.L. (2009). Batch adsorption of phenol onto physiochemical-activated coconut shell. J. Hazard. Mater. 161(2–3), 1522–1529. DOI: 10.1016/j.jhazmat.2008.05.009.

12. Lin, K., Pan, J., Chen, Y., Cheng, R. & Xu, X. (2009). Study the adsorption of phenol from aqueous solution on hydroxyapatite nanopowders. J. Hazard. Mater. 161(1), 231–240. DOI: 10.1016/j.jhazmat.2008.03.076.

13. Downie, A., Crosky, A. & Munroe, P. (2009). Physical properties of biochar. In: Lehmann, J., Joseph, S. (Eds.). Biochar for environmental management science and technology (13–32). London. UK, Earthscan.

14. Catalano, P.J., Insley, G.M. & Hess, B. (2007). An in-vivo comparative analysis of the intra-operative properties of injectable calcium phosphate/calcium sulphate based bone cements. Key Eng. Mater. 330–332, 799–802. DOI: 10.4028/www.scientific.net/KEM.330-332.799.

15. Evaniew, N., Tan, V., Parasu, N., Jurriaans, E., Finlay, K., Deheshi, B. & Ghert, M. (2013). Use of a calcium sulphate-calcium phosphate synthetic bone graft composite in the surgical management of primary bone tumors. Orthopedics 36(2), 216–222. DOI: 10.3928/01477447-20130122-25.

16. Del Rio, J.G., Sanchez, P., Morando, P.J., Cicerone, D.S. (2006). Retention of Cd, Zn and Co on hydroxyapatite filters. Chemosphere 64(6), 1015–1020. DOI: 10.1016/j.chemosphere.2006.02.008.

17. Lin, K., Pan, J., Chen, Y., Cheng, R. & Xu, X. (2008). Adsorption of phenol from aqueous solution by hydroxyapatite nanopowders. Part II: kinetic, equilibrium and thermodynamic studies, The 2nd ICBBE, 16–18 May 2008 (3119–3122). Shanghai, China: IEEE. DOI: 10.1109/ICBBE.2008.1109.

18. Mowla, D. & Ahmadi, M. (2007). Theoretical and experimental investigation of biodegradation of hydrocarbon polluted water in a three phase fluidized-bed bioreactor with PVC biofilm support. Biochem. Eng. J. 36(2), 147–156. DOI: 10.1016/j.bej.2007.02.031.

19. Wu, J. & Yu, H.Q. (2006). Biosorption of 2.4-dichlorophenol from aqueous solution by Phanerochaete chrysosporium biomass: Isotherms, kinetics and thermodynamics. J. Hazard. Mater. 137(1), 498–508. DOI: 10.1016/j.jhazmat.2006.02.026.

20. Calace, N., Nardi, E., Petronio, B.M. & Pietroletti, M. (2002). Adsorption of phenols by papermill sludges, Environ. Pollu. 118(3), 315–319. DOI: 10.1016/S0269-7491(01)00303-7.

21. Mall, I.D., Srivastava, V.C. & Agarwal, N.K. (2006). Removal of Orange-G and Methyl Violet dyes by adsorption onto bagasse fly ash-kinetic study and equilibrium isotherm analyses. Dyes Pigm. 69(3), 210–223. DOI: 10.1016/j.dyepig.2005.03.013.

22. Hanen, N. & Abdelmottaleb, O. (2013). Modeling of the Dynamics Adsorption of Phenol from an Aqueous Solution on Activated Carbon Produced from Olive Stones. Inter. J. Chem. Eng. & Appl. 4(4), 254–261. DOI: 10.7763/IJCEA.2013.V4.306.

23. Zhang, Z.B., Cao, X.H., Liang, P. & Liu, Y.H. (2013). Adsorption of uranium from aqueous solution using biochar produced by hydrothermal carbonization. J. Radioanal. Nucl. Chem. 295(2), 1201–1208. DOI: 10.1007/s10967-012-2017-2.

24. Tan, Z., Xiang, J., Su, S., Zeng, H., Zhou, C., Sun, L., Hu, S. & Qiu, J. (2012). Enhanced capture of elemental mercury by bamboo-based sorbents. J. Hazard. Mater. 239–240, 160–166. DOI: 10.1016/j.jhazmat.2012.08.053.

25. Sathishkumar, M., Binupriya, A.R., Kavitha, D. & Yun, S.E. (2007). Kinetic and isothermal studies on liquid-phase adsorption of 2, 4-dichlorophenol by palm pith carbon. Bioresour. Technol. 98(4), 866–873. DOI: 10.1016/j.biortech.2006.03.002.

26. Rengaraj, S., Moon, S.H., Sivabalan, R., Arabindoo, B. & Murugesan, V. (2002). Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manage. 22(5), 543–548. DOI: 10.1016/S0956-053X(01)00016-2.

27. Ahmaruzzaman, M. & Sharma, D.K. (2005). Adsorption of phenols from wastewater, J. Coll. Inter. Sci. 287(1), 14–24. DOI: 10.1016/j.jcis.2005.01.075.

28. Özkaya, B. (2006). Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J. Hazard. Mater. 129(1–3), 158–163. DOI: 10.1016/j.jhazmat.2005.08.025.

29. Vázquez, I., Iglesias, J.R., Marañón, E., Castrillón, L. & Álvarez, M. (2007). Removal of residual phenols from coke wastewater by adsorption. J. Hazard. Mater. 147(1–2), 395–400. DOI: 10.1016/j.jhazmat.2007.01.019.

30. Quintelas, C., Sousa, E., Silva, F., Neto, S. & Tavares, T. (2006). Competitive biosorption of ortho-cresol, phenol, chlorophenol and chromium (VI) from aqueous solution by a bacterial biofilm supported on granular activated carbon. Process Biochem. 41(9), 2087–2091. DOI: 10.1016/j.procbio.2006.04.014.

31. Wang, S.L., Tzou, Y.M., Lu, Y.H. & Sheng, G. (2007). Removal of 3-chlorophenol from water using rice-straw-based carbon. J. Hazard Mater. 147(1–2), 313–318. DOI: 10.1016/j.jhazmat.2007.01.031.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Cited By

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 178 178 39
PDF Downloads 95 95 27