

Synthesis and characterization of the aluminium phosphates modified with ammonium, calcium and molybdenum by hydrothermal method

Kinga Łuczka^{1*}, Barbara Grzmil¹, Bogumił Kic¹, Krzysztof Kowalczyk²

¹West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland ²West Pomeranian University of Technology, Szczecin, Polymer Institute, ul. Pułaskiego 10, 70-322 Szczecin, Poland *Corresponding author: e-mail: kluczka@zut.edu.pl

Synthesis and characterization of the aluminum phosphates modified with ammonium, calcium and molybdenum were conducted. The influence of process parameters (reactive pressure and molar ratios) in the reaction mixture were studied. The contents of the individual components in the products were in the range of: 10.97-17.31 wt% Al, 2.65-13.32 wt% Ca, 0.70-3.11 wt% Mo, 4.36-8.38 wt% NH₃, and 35.12-50.54 wt% P₂O₅. The materials obtained in the experiments were characterized by various physicochemical parameters. The absorption oil number was in the range from 67 to 89 of oil/100 g of product, the surface area was within the range of 4-76 m²/g, whereas the average particle size of products reached 282–370 nm. The Tafel tests revealed comparable anticorrosive properties of aluminum phosphates modified with ammonium, calcium, molybdenum in comparison with commercial phosphate.

Keywords: hydrothermal method, anticorrosive pigments, modified aluminum phosphates.

INTRODUCTION

The aim of pigment mixture development is to enhance the anticorrosion efficiency of non-toxic pigments and shift their efficiency closer to the old, toxic (but very efficient) chromate and lead pigments. Such development is necessary to meet tough environmental norms that are steadily becoming stricter^{1, 2, 3}. The latest EU legislation on organic coatings took effect in 2010 and was aimed at reducing volatile organic compounds in paint systems².

Literature reports seem to suggest that the anticorrosion properties of pigments are affected not only by their chemical composition, but also by other factors, including their particle size, oil number, specific surface area and water solubility^{4, 5, 6}. Changes in the structure and chemical composition of various materials can be obtained by using different process parameters in their preparation (e.g. substrate molar ratio, the pH of a reaction mixture, reaction time, pressure, temperature) or with microwave radiation^{7, 8, 9}. Microwave is an energy source which has found its applications in many scientific research areas. Microwave radiation has shown its capability for fast preparation of size controlled metallic nanostructures on different substrates^{10, 11}. Microwave technique attracts more interest because it can generate heat internally inside the sample so the heat can be transferred homogeneously and rapidly. The microwave technique requires far less energy than resistive heating and is less polluting than gas or oil fired heaters and is therefore more environmentally friendly¹². Moreover, rapid initial heating of the microwave can enhance the kinetics of the reaction due to the formation of high temperature throughout the sample¹³.

The aim of the presented work was to elaborate the preparation process of aluminum phosphates modified with ammonium, calcium and molybdenum by hydrothermal method. Their steel corrosion inhibition efficiency was investigated by means of the potentiodynamic polarization technique. The influence of preparation process parameters on several physicochemical properties of the products such as chemical composition, oil absorption and specific surface area was determined. Based on the Tafel test results the corrosion potential, corrosion current density and corrosion rate for steel immersed in a phosphate extract in an aqueous NaCl solution were calculated and presented.

EXPERIMENTAL

Procedure

Studies on the synthesis of aluminum phosphates modified with ammonium, calcium and molybdenum were performed on the basis of the experimental planning and analysis according to a three-level $3^{(k-p)}$ fractional factorial designs with 9 experiments using the hydrothermal method. The process independent variables were: x_1 – the pressure (1.1 ± 1 MPa), x_2 – the molar ratio of Ca²⁺ to PO₄³⁻ in the substrates 0.2 ± 0.13 : 1 corresponding to the molar ratios of Al³⁺ to Ca²⁺ to Mo⁶⁺ to PO₄³⁻ in the reaction mixture (0.67 : 0.2 ± 0.13 : 0.2 ± 0.13 : 1).

The aim of the study was to obtain products with the molar ratio of $(NH_4)_3Al_2(PO_4)_3$ to $CaMoO_4$ varying in the range of 1 : (0.6 ± 0.4) . Therefore, to obtain a product with the molar ratio of $(NH_4)_3Al_2(PO_4)_3$ to $CaMoO_4$ equalling 1 : 1, the reactor had to be feed with substrates in the molar ratios corresponding to those in the following reactions:

 $\begin{array}{l} 14Al(OH)_{3} + 21(NH_{4})_{2}HPO_{4} \rightarrow 7(NH_{4})_{3}Al_{2}(PO_{4})_{3} + \\ + 21NH_{4}OH + 21H_{2}O & (1) \\ 7CaCO_{3} + (NH_{4})_{6}Mo_{7}O_{24} + 3H_{2}O \rightarrow 7CaMoO_{4} + \\ + 6NH_{4}OH + 7CO_{2} & (2) \end{array}$

During the experiments, it turned out that a competitive reaction involving hydroxylapatite precipitation was also proceeding:

 $3(NH_4)_2HPO_4 + 5CaCO_3 + 4NH_4OH \rightarrow Ca_5(PO_4)_3(OH) + 5(NH_4)_2CO_3 + 3H_2O$ (3)

Multiple dependent variables defining the physicochemical properties of prepared products were as follows: the content of Al^{3+} (y₁), Ca^{2+} (y₂), Mo^{6+} (y₃), NH_3 (y₄), P₂O₅ (y₅), oil absorption number (y₆), specific surface area S_{BET} (y₇), and average particle size (y₈).

	Independent variables		Dependent variables							
Phosphate acronym	x ₁ x ₂		y 1	y ₂	у 3	y 4	y 5	y 6	y 7	y 8
	[MPa]		[wt%]				[g/100g]	[m²/g]	[nm]	
AACMPH1	0.1	0.07	17.31	3.50	1.07	6.41	43.5	73	76	346
AACMPH2	1.1	0.07	17.31	2.98	0.70	6.51	44.2	75	54	297
AACMPH3	2.1	0.07	15.25	2.65	0.79	8.38	50.54	67	34	343
AACMPH4	0.1	0.2	14.32	8.47	1.21	5.65	40.51	74	55	320
AACMPH5	1.1	0.2	13.49	9.45	1.58	5.78	40.68	75	57	311
AACMPH6	2.1	0.2	13.65	8.95	2.28	5.74	41.16	68	52	370
AACMPH7	0.1	0.33	10.97	13.32	3.11	4.36	35.12	81	51	282
AACMPH8	1.1	0.33	11.57	13.11	3.00	4.98	40.55	89	69	305
AACMPH9	2.1	0.33	11.08	13.09	2.55	5.71	42.44	74	41	310

Table 1. Three-level 3^(k-p) fractional factorial design and physicochemical properties of aluminum phosphates modified with ammonium, calcium and molybdenum obtained hydrothermal conditions

The aim of the performed experiments according to the established plan was to determine the fractional design at 3 levels of the important factors affecting the investigated parameters and to find the right input values enabling to obtain a product with the expected properties¹⁴. A factorial plan and the results obtained from experiments are summarized in Table 1. Basing on the beginning studies it was take that the constant conditions process were equal to: pH of the reaction was 6 and time reaction was allowed 20 minutes. The total salt concentration amounted to 40 wt%.

Sample preparation

Reagent grade substrates: (NH₄)₂HPO₄, CaCO₃, $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$, an aqueous ammonia (25 wt%) of NH₃) and amorphous Al(OH)₃ were used. Aluminum hydroxide was precipitated in the reaction of aluminum nitrate with potassium hydroxide at $pH = 7.5^{15}$. The molar ratios of Al⁺³: Ca²⁺: Mo⁶⁺: PO₄³⁻ in the reaction mixture amounted to $0.67 : (0.2 \pm 0.13) : (0.2 \pm 0.13) : 1$. The constant process parameters were: pH of the reaction equal to 6 and the total salt concentration amounted to 40 wt%. A suspension of amorphous aluminum hydroxide and calcium carbonate was dosed into an ammonium molybdate and ammonium phosphates solution at a constant stirring velocity. The suspension of reactants with an appropriate pH was prepared in a glass reactor and the mixture was transferred into the microwave reactor and treated at a pressure of 1.1 ± 1 MPa (microwave reactor type ERTEC Magnum, output 750 W at a frequency of 2.45 GHz, Ertec Poland), for 20 min. The obtained precipitate was separated from the mother liquor using a vacuous filter, followed by triple washing with distilled water (the weight ratio of the liquid to the solid phase was 3 : 1). Finally, the obtained product was dried for 3 h at 70°C.

Anticorrosive properties of the modified aluminum phosphate for cold rolled steel were investigated by means of the potentiodynamic polarization technique. For comparison purposes, two commercial anticorrosive pigments, i.e. zinc phosphate and zinc aluminum phosphate (FC-M2, FAC) were tested.

Sample characterization

The content of aluminum, calcium and molybdenum in the products was determined by ICP-AES analysis (Optima 5300 DV, Perkin Elmer). The phosphates and ammonium contents were determined using a spectrophotometric method¹⁵ and ion selective electrode Orion 11–35 type, respectively¹⁶. The phase composition of the products was studied with X-ray diffraction analysis (CuKá radiation, X'Pert PRO Philips diffractometer). The oil absorption (grams of oil required to form a homogeneous paste with 100 g of the tested dry pigment) was determined according to PN-EN ISO 787-5 standard¹⁷. The measurements of Brunauer-Emmett-Teller surface area (S_{BET}) of the materials were performed using Micrometrics Quadrasorb SI Quantachrome Instrument. N2 adsorption/desorption measurements were carried out at liquid N₂ temperature. The average particle size of the materials was determined using a laser scanning microscope (VK-9700, Keyence, USA). The phosphate morphology was examined with a scanning electron microscope SU-70 (Hitachi, Japan). The chemical composition of the phosphates was determined using a scanning electron microscope with a cold field emission (HITACHI SU8020, resolving power 1.3 nm), coupled with the energy dispersive X-ray analyzer (EDX – Thermo Scientific).

Tafel experiments in the range from -250 to 500 mV in relation to OCP (scan rate 0.25 mV $s^{\text{--}1}$) for an uncoated steel substrate (SEA 1008/1010, Q-Panels, Q--Lab Europe, England) were performed using DC105 software and FAS2 femtostat (Gamry, USA). As a result, corrosion potential (E_{corr}) , corrosion current density (i_{corr}) and corrosion rate (P) were determined using Echem Analyst software (Gamry). Steel polarization was carried out using electrolytes prepared by shaking a phosphate filler (2.5 g) with 100 g of 3.5 wt% NaCl aqueous solution for 2 h (i.e. twice for 1 h with a 22 h interval). Then, the suspension was centrifuged (4000 rpm, 10 min) and an aqueous extract was carefully decanted. The Tafel tests were made after 20 h of a glass cell filling with an electrolyte (aqueous NaCl solution or phosphate extract). The corrosion inhibition efficiency $(\eta, \%)$ of phosphate extracts was calculated according to the following equation:

$$\eta = \left[\frac{i_0 - i}{i_0}\right] \times 100 \tag{1}$$

where i_0 and *i* are corrosion current densities registered for steel substrate immersed in a 3.5 wt% NaCl aqueous solution and the aqueous extract of phosphate filler, respectively.

RESULTS AND DISCUSSION

Figure 1 and Table 2 shows the phase composition of the precipitated products, which was determined

Phosphate acronym	Independent variables		Phase c	omposition (peak i	ntensity)	Molar ratio
	X 1 [MPa]	x ₂	(NH ₄) ₃ Al ₂ (PO ₄) ₃	Ca ₅ (PO ₄) ₃ (OH)	CaMoO ₄	Al ³⁺ :Ca ²⁺ :Mo ⁶⁺ :NH ₄ ⁺ :PO ₄ ³⁻
AACMPH1	0.1		***	**	-	1.0 : 0.1 : 0.02 : 0.62 : 1
AACMPH2	1.1	0.07	***	**	-	1.0 : 0.1 : 0.01 : 0.62 : 1
AACMPH3	2.1		***	**	-	0.8 : 0.1 : 0.01 : 0.69 : 1
AACMPH4	0.1	0.2	**	**	**	0.9 : 0.4 : 0.02 : 0.58 : 1
AACMPH5	1.1		**	**	**	0.9 : 0.4 : 0.03 : 0.59 : 1
AACMPH6	2.1		**	**	**	0.9 : 0.4 : 0.04 : 0.58 : 1
AACMPH7	0.1	0.33	*	**	***	0.8 : 0.7 : 0.07 : 0.52 : 1
AACMPH8	1.1		*	**	***	0.8 : 0.6 : 0.05 : 0.51 : 1
AACMPH9	2.1		*	***	***	0.7 : 0.5 : 0.04 : 0.56 : 1

Table 2. The phase composition and molar ratio of the components in obtained products

Figure 1. X-ray diffraction patterns of products obtained (AACMPH3 and AACMPH9) [■] (NH₄)₃Al₂(PO₄)₃;
[●] CaMoO₄; [▲] Ca₅(PO₄)₃(OH)

using XRD analysis. $(NH_4)_3Al_2(PO_4)_3$, $CaMoO_4$ and $Ca_5(PO_4)_3(OH)$, crystalline compounds, were identified. Their ratio varied depending on the composition of substrate mixture. For the lowest molar ratio of Al^{3+} : Ca^{2+} in the initial mixture equalling 2 (Al^{3+} : Ca^{2+} 0.67 : 0.33), the content of $CaMoO_4$ in the products was the highest. However, the higher was the molar ratio of reagents containing aluminum and calcium, the higher was the content of $(NH_4)_3Al_2(PO_4)_3$ in the precipitated solid phases.

The chemical composition of the obtained materials mainly depended on the substrate molar ration which determined the phase composition. Products with a higher molar ratio between $(NH_4)_3Al_2(PO_4)_3$ and $CaMoO_4$ contained more aluminum and ammonia and less calcium and molybdenum. Therefore, products in each group had similar chemical and phase compositions: I – AACMPH1-3, II – AACMPH4-6, III – AACMPH7-9. Similarly, products from different groups had different chemical and phase compositions (Tables 1 and 2). The precipitated products were in the range of: 10.97–17.31 wt% Al, 2.65–13.32 wt% Ca, 0.70–3.11 wt% Mo, 4.36–8.38 wt% NH₃, and 35.12–50.54 wt% P₂O₅ (Table 1).

A statistical analysis, focused on determining process parameters that had a significant influence on the physicochemical properties of the obtained phosphates, was conducted to assess the effects of changes in input values y_{1-8} for the extremum input values $x_{1,2}$. Pareto charts were drawn to illustrate the trends (Fig. 2). To confirm the assessment significance of obtained effects, Anova analysis was performed (Table 3).

The molar ratio of Ca^{2+} to PO_4^{3-} in substrates (x_2) was found to have a statistically significant effect on aluminum content (y_1) in the products. Bearing in mind that (x2(L), effect-5.42) has a negative number (Table 3), it was fair to think that a lower values of x_2 would result in the increase of the dependent variable y_1 .

Therefore, aluminum phosphates modified with ammonium, calcium and molybdenum with a higher content of aluminum (the average content of 16.6 wt% Al) were to be precipitated from the reaction mixture with the Al^{3+} : Ca^{2+} : Mo^{6+} : PO_4^{3-} molar ratio of 0.67 : 0.07 : 0.07 : 1.

The molar ratio of reagents (x_2) was found to have the highest statistic effect on calcium content (y_2) in the products. The positive effect $(x_2(L), effect 10.13)$ of this influence seems to indicate the increase of y_2 values, starting from approximately 3 wt% Ca to about 13 wt% Ca along with the increase of x_2 from 0.07 : 1 to 0.33 : 1 (Table 3). The dependent variable y_3 denoting molybdenum content in the obtained phosphates, also depended on the molar ratio of Ca²⁺ : PO₄³⁻ in the reaction mixture. The statistical analysis demonstrated the positive sign of the effect ($x_2(L)$, effect 2.03) which translated into the increase of molybdenum content in the products (from approximately 0.8 wt% to about 3 wt%) along with the increase of the independent variable (Table 3).

The content of ammonium groups (the dependent variable y_4) in the obtained products also depended on the Ca²⁺ : PO₄³⁻ ratio in the reaction mixture (x₂(L), effect -2.08). It was found that the less calcium (and at the same time molybdenum) was introduced into the reaction mixture, the higher was the content of nitrogen in the products. It increased from approximately 5 wt% NH₃ to about 7 wt% NH₃.

It was demonstrated that another dependent variable y_6 , i.e. the content of phosphates in the products was affected only by the molar ratio of the substrates. Following the analysis of effect assessment ($x_2(L)$ –6.71), the highest content of phosphates in the obtained products was observed for the Ca²⁺ : PO₄³⁻ molar ratio of 0.07 : 1 in the reaction mixture.

It was statistically demonstrated that the above discussed input variables correlated with the chemical composition of the products were not affected by the pressure of the process (0.1–2.1 MPa).

Standardized effect estimate (absolute value)

Standardized effect estimate (absolute value)

Standardized effect estimate (absolute value)

Figure 2. Pareto charts of standardized y_{1-8}

Pareto charts of standardized effects for y₄

Standardized effect estimate (absolute value)

Pareto charts of standardized effects for y₈

Standardized effect estimate (absolute value)

Verification Lower Bound Upper Bound Vir yi Meanloonstant 13.88333 0.236741 58.64356 0.000001 13.22603 14.54063 (1)X1(L) -0.87333 0.579895 -1.56662 0.206528 -2.4335 0.73671 (2)X2(L) -5.4667 0.579895 -9.34078 0.600731 -7.02671 -3.80662 X2(Q) -0.09500 0.502203 -0.18917 0.589173 -1.48934 1.29934 Meaniconstant 8.39111 0.144279 58.15881 0.000001 7.90553 8.7166 (1)X1(L) -0.21677 0.335411 26.66282 0.000009 9.15044 11.12289 X2(Q) 0.85803 0.306663 2.77933 0.049822 0.0017 1.70660 Weanvonstant 18.10000 0.151021 11.188967 0.000278 1.38070 2.22302 (1)X1(L) 0.076687 0.308925 0.20726 0.845386 -0.96447 0.91444 (2)X2(L) 2.033333 0.36	Independent	Effect	Std. Error	t[4]	p	95% Confidence Interval for Difference				
y y BeanConstant 13.8333 0.238741 58.64395 0.000011 13.22803 14.54083 (1)X1(L) -0.87333 0.578955 -5.34078 0.000731 -7.02871 -3.36062 X2(Q) -5.04667 0.579895 -5.34078 0.000731 -1.48934 1.28994 X2(Q) -0.09500 0.502033 -0.18817 0.489173 -1.48934 1.28994 MeanConstant 8.39111 0.14279 58.15881 0.000011 7.99053 8.79169 (1)X1(L) -0.21677 0.353411 -0.57663 0.598778 -1.16289 0.77986 X1(Q) 0.190383 0.306063 2.7993 0.49822 0.0107 1.70606 X2(Q) 0.85083 0.306063 2.7993 0.49822 0.0107 1.70807 X1(Q) 0.85083 0.306084 -0.23411 0.82598 -0.95441 1.103743 X1(Q) -0.075000 0.320344 -0.23411 0.825985 -0.96447 0.814474	variables					Lower Bound	Upper Bound			
Mean/constant 13.88333 0.238741 98.84360 0.00001 13.2203 14.54063 (1)X1(L) -0.33600 0.502203 0.71684 0.513101 -2.48338 0.73741 (2)X2(L) -6.41667 0.579895 -9.34078 0.000731 -7.0271 -3.8062 (2)X2(L) -0.41667 0.579895 -9.34078 0.000701 -7.0271 -3.8062 (1)X1(L) -0.20167 0.353411 -0.57063 0.598778 -1.16289 0.077856 (1)X1(L) -0.20167 0.353411 2.866826 0.000009 9.15044 11.11289 (2)X2(L) 10.18633 0.30663 2.77993 0.04922 0.0017 1.03663 (1)X1(L) 0.07667 0.369825 0.20725 0.845383 -0.96447 1.03443 X1(Q) -0.076667 0.369825 5.49661 0.00026 1.9067 1.90774 X1(Q) -0.16000 0.320344 -0.24141 0.82236 -0.94474 X1(Q) -0.16000 0.320344				y 1						
(1)X1(L) -0.67333 0.57995 -1.5062 0.208268 -2.4338 0.7371 X1(Q) 0.36000 0.562203 0.71864 0.513101 -1.0434 1.75434 X2(Q) -0.09500 0.502203 0.71864 0.560013 -1.4934 1.29334 X2(Q) -0.09500 0.502203 -0.18917 0.600731 -7.0267 -3.30662 X1(L) -0.20167 0.353411 -0.57083 0.598978 -1.1829 0.77956 X1(Q) 0.16083 0.30663 0.56644 0.568386 -0.66693 1.30601 X1(Q) 0.85083 0.30663 0.50275 0.049822 0.01007 1.70060 X2(Q) 0.85083 0.30663 0.20275 0.445935 -0.96441 1.10373 X1(Q) -0.075600 0.320364 -0.56186 0.604202 -1.06947 0.34972 X1(Q) -0.18000 0.320364 -0.56186 0.604202 -1.06947 0.347427 X1(Q) -0.28500 0.400666	Mean/constant	13.88333	0.236741	58.64356	0.000001	13.22603	14.54063			
X1(Ω) 0.36000 0.002203 0.71684 0.01011 I=1.0344 1.75434 (2)X2(L) -5.41667 0.579995 -9.34078 0.000731 -7.02671 3.30662 X2(Ω) -0.09500 0.02023 -0.18917 0.6589173 -1.48934 1.29934 Wean/constant 8.39111 0.14279 58.15811 0.00001 7.99053 8.79169 (1)X1(L) -0.20167 0.353411 2.65628 0.00001 7.99053 8.79169 X1(Ω) 0.1803 0.306063 2.77993 0.049822 0.00107 1.10260 X1(Ω) 0.056083 0.306063 2.77993 0.049822 0.0017 1.30070 2.225020 (1)X1(L) 0.076667 0.369925 0.20275 0.448938 -0.09641 1.111203 X1(Ω) 0.076667 0.369925 5.49661 0.00228 -0.09441 1.010743 X1(Ω) 0.376667 0.482649 2.45866 0.069927 -0.14747 2.421187 X1(Ω) 0.38	(1)X1(L)	-0.87333	0.579895	-1.50602	0.206526	-2.48338	0.73671			
(2)X2(1) -5.41667 0.75985 -9.4078 0.00971 -7.40271 -7.48934 X2(0) -0.09500 0.502203 -0.18917 0.589173 -1.48934 1.29934 Mean'constant 6.39111 0.142279 58.15861 0.000001 7.9905 8.79169 (1)X1(1) -0.20167 0.353411 -0.57063 0.589378 -1.18289 0.79956 X2(0) 0.180633 0.590644 0.588338 -0.68033 1.03060 (2)X2(1) 10.13167 0.353411 2.86828 0.00009 9.15444 111289 X2(0) 0.85663 0.306063 2.77993 0.048822 0.00107 1.229301 (1)X1(1) 0.076667 0.369925 0.20725 0.484938 -0.95441 1.103743 X1(0) -0.075000 0.320364 -0.23411 0.826355 -0.96447 0.814474 (2)X2(1) -0.26833 0.462649 2.45866 0.069302 -1.06947 0.70947 Mean'constant 5.94667 0.188876 </td <td>X1(Q)</td> <td>0.36000</td> <td>0.502203</td> <td>0.71684</td> <td>0.513101</td> <td>-1.03434</td> <td>1.75434</td>	X1(Q)	0.36000	0.502203	0.71684	0.513101	-1.03434	1.75434			
X2(Q) -0.08500 0.62203 -0.18917 0.869173 -1.48934 1.29934 Wean(constant 8.39111 0.144279 58.15881 0.000001 7.99053 8.79169 (1)X1(1) -0.2167 0.335411 2-0.67063 0.58978 -1.18289 0.77585 X1(Q) 0.16093 0.306063 0.56084 0.5608389 -0.66893 1.03090 (2)X2(L) 10.13167 0.353411 28.66826 0.00009 9.15044 11.11289 X2(Q) 0.86803 0.36063 2.77993 0.404822 0.0007 2.22302 (1)X1(L) 0.076667 0.369925 0.20215 0.845938 -0.96444 0.814474 (2)X2(L) 2.03333 0.369925 5.49661 0.000248 1.00627 3.6647107 X1(Q) -0.168000 0.320344 -0.58166 0.604202 -1.06977 0.70474 X2(Q) -0.38060 0.462649 2.45686 0.060227 -0.44785 2.42187 X1(Q) -0.28500	(2)X2(L)	-5.41667	0.579895	-9.34078	0.000731	-7.02671	-3.80662			
yz Mean/constant 8.39111 0.144279 58.15881 0.00001 7.9905 8.79166 (1)X1(L) -0.20167 0.353411 -0.57063 0.590778 -1.18280 0.77356 X1(0) 0.18083 0.300063 0.590844 0.568338 -0.66893 1.10300 (2)X2 (L) 10.13167 0.353411 28.66826 0.000009 9.15644 11.11289 Mean/constant 1.810000 0.151021 11.98607 0.00278 1.39070 2.22332 (1)X1(L) 0.076667 0.369925 0.20725 0.845938 -0.96447 0.81447 X1(Q) -0.075000 0.320384 -0.283411 0.82335 -0.96447 0.81447 X1(Q) -0.180000 0.320384 -0.58186 0.604202 -1.06947 0.709474 Wean/constant 5.94667 0.18876 31.48453 0.00000 5.4225 6.471070 (1)X1(L) 1.13667 0.462649 2.456866 0.069927 -0.14785 2.421187 <tr< td=""><td>X2(Q)</td><td>-0.09500</td><td>0.502203</td><td>-0.18917</td><td>0.859173</td><td>-1.48934</td><td>1.29934</td></tr<>	X2(Q)	-0.09500	0.502203	-0.18917	0.859173	-1.48934	1.29934			
Mean/constant 8.39111 0.144279 58.15881 0.00001 7.99053 8.79169 (1)X1(L) -0.20167 0.353411 -0.57083 0.598778 -1.18289 0.77956 (1)X1(L) 10.13167 0.353411 28.66826 0.00009 9.15044 11.11289 X2(Q) 0.85083 0.306063 2.77993 0.049822 0.00107 1.70960 X2(Q) 0.67667 0.36925 0.20725 0.455338 -0.35641 1.03743 X1(Q) -0.076600 0.320344 -0.23411 0.826395 -0.98447 0.814474 (2)X2(L) 2.03333 0.39925 5.49661 0.000340 1.00624 3.06010 X2(Q) -0.18000 0.32034 -0.5616 0.604202 -0.64768 2.421187 X1(Q) -0.18000 0.32034 -0.64653 0.00000 5.42226 6.471070 (1)X1(L) 1.13667 0.462649 2.45086 0.000092 -0.44768 2.421187 X1(Q) -0.28500	у ₂									
(1)X1(1) -0.2167 0.353411 -0.57063 0.58978 -1.1828 0.77956 X1(0) 0.18083 0.306063 0.59084 0.58038 -0.66833 1.03060 X2(0) 0.13167 0.353411 28.66826 0.00009 9.15644 11.1128 X2(0) 0.85983 0.306063 2.77933 0.049822 0.00107 1.22302 (1)X1(1) 0.076667 0.369925 0.20725 0.845938 -0.95041 1.103743 X1(0) -0.075000 0.320364 -0.23411 0.826395 -0.96447 0.814474 X2(2) -0.18000 0.320364 -0.55186 0.604202 -1.06847 0.769474 X2(2) -0.18000 0.320364 -0.55186 0.604202 -1.06847 0.769474 X1(1) 1.13667 0.482649 2.45866 0.609927 -0.4785 2.421167 X1(0) -0.33500 0.400666 -0.3311 0.456132 -1.4743 0.77927 X1(0) -0.33503 1.844886 </td <td>Mean/constant</td> <td>8.39111</td> <td>0.144279</td> <td>58.15881</td> <td>0.000001</td> <td>7.99053</td> <td>8.79169</td>	Mean/constant	8.39111	0.144279	58.15881	0.000001	7.99053	8.79169			
X1(0) 0.18083 0.306063 0.59084 0.586398 0.68833 1.03060 (2)X2 (L) 10.13167 0.353411 28.6826 0.00009 9.15044 11.11289 X2(0) 0.35063 0.306063 2.77933 0.049822 0.0017 1.70060 V y v v v v v v Mean/constant 1.810000 0.151021 11.98507 0.00278 1.39070 2.229302 (1)X1(L) 0.076667 0.389925 0.49661 0.005340 -0.95041 1.103743 X2(Q) -0.180000 0.320364 -0.23411 0.826395 -0.96447 0.814474 X2(Q) -0.180000 0.320364 -0.56186 0.060927 -0.14785 2.421187 X1(Q) -0.28500 0.400666 -0.71132 0.516171 -1.39743 0.827427 X2(Q) -0.33500 0.400666 -0.39151 0.45613 -0.2299 10.23662 X1(Q) -0.28633 0.462649	(1)X1(L)	-0.20167	0.353411	-0.57063	0.598778	-1.18289	0.77956			
(2)X2 (L) 10.13167 0.338411 28.682/6 0.000009 9.15044 11.1128 X2(Q) 0.85083 0.306063 2.77933 0.049822 0.00107 1.70060 Mean/constant 1.810000 0.151021 11.98507 0.000278 1.39070 2.229302 (1)X1(L) 0.076667 0.369825 0.20725 0.845938 -0.95041 1.103743 X1(Q) -0.075000 0.320364 -0.28411 0.862595 -0.96447 0.814474 (2)X2(L) 2.033333 0.369925 5.49661 0.0603202 -1.06947 0709474 X2(Q) -0.180000 0.320364 -0.28410 0.80000 5.42226 6.471070 (1)X1(L) 1.13667 0.482649 2.45686 0.069927 -0.14785 2.421187 X1(Q) -0.28330 0.462649 4.450305 0.010797 -3.36785 -0.798813 X2(Q) -0.33500 0.400666 -0.33611 0.450132 -1.44743 0.777427 Mean/constant 4	X1(Q)	0.18083	0.306063	0.59084	0.586398	-0.66893	1.03060			
X2(Q) 0.85083 0.306063 2.77993 0.049822 0.00107 1.70060 y Wean/constant 1.810000 0.151021 11.98507 0.000278 1.39070 2.229302 (1)X1(L) 0.076667 0.369925 0.20725 0.845938 -0.96447 0.814474 (2)X2(L) 2.03333 0.369925 5.49661 0.0005340 1.00626 3.060410 X2(Q) -0.180000 0.320364 -0.56186 0.609202 -1.06947 0709474 Wean/constant 5.94667 0.188678 31.48453 0.000006 5.42226 6.471070 (1)X1(L) 1.13667 0.462649 2.45686 0.069927 -0.14785 2.421187 X1(Q) -0.28500 0.400666 -0.7132 0.516171 -1.39743 0.827427 (2)X2(L) -2.03330 0.462649 4.55305 0.010797 -3.36765 -0.798613 X2(Q) -0.33500 0.406666 -0.83611 0.450132 -1.44743 0.777427	(2)X2 (L)	10.13167	0.353411	28.66826	0.000009	9.15044	11.11289			
ys ys Mean/constant 1.810000 0.151021 11.98907 0.000278 1.39070 2.229302 (1)X1(L) 0.076667 0.369925 0.20725 0.845938 0.95041 1.103743 X1(Q) -0.075000 0.320364 -0.23411 0.826395 -0.96447 0.814474 (2)X2(L) 2.033333 0.369925 5.49661 0.005340 1.00626 3.060410 X2(Q) -0.180000 0.320364 -0.66186 0.604202 -1.06947 0709474 X2(Q) -0.180000 0.320364 -0.56186 0.60927 -0.14785 2.421187 X1(Q) -0.28500 0.400666 -0.71132 0.518171 -1.37423 0.827427 (2)X2(L) -2.08333 0.462649 4.50305 0.010797 -3.36785 -0.798613 X2(Q) -0.33500 0.406666 -0.71132 0.565718 -0.2299 10.23662 X1(Q) -0.40167 1.632359 -0.24607 0.817743 -4.9338 4.13049	X2(Q)	0.85083	0.306063	2.77993	0.049822	0.00107	1.70060			
Mean/constant 1.810000 0.151021 11.98507 0.000278 1.39070 2.229302 (1)X1(L) 0.076667 0.369925 0.20725 0.844938 -0.95041 1.103743 X1(Q) -0.075000 0.320364 -0.23411 0.828395 -0.96447 0.814474 X2(Q) -0.180000 0.320364 -0.56186 0.604202 -1.06947 0709474 Wean/constant 5.94667 0.188876 31.48453 0.000006 5.42226 6.471070 (1)X1(L) 1.13667 0.462649 2.45686 0.069927 -0.14785 2.421187 X1(Q) -0.28500 0.400666 -0.33611 0.450132 -1.44743 0.827427 (2)X2(L) -2.08333 0.462649 2.45686 0.000001 39.9413 44.21426 (1)X1(L) -0.3500 0.400666 -0.33611 0.460132 -1.44743 0.779427 V -0.30303 1.88486 2.65445 0.056718 -0.2299 10.23662 X1(Q) -0.4016				y 3						
(1)X1(L) 0.076667 0.369925 0.20725 0.845938 -0.95041 1.103743 X1(Q) -0.075000 0.320364 -0.23411 0.820395 -0.96647 0.814474 (2)X2(L) 2.033333 0.369925 5.49661 0.005340 1.00626 3.060410 X2(Q) -0.160000 0.320364 -0.56186 0.604202 -1.06947 0709474 Y* Mean/constant 5.94667 0.188876 31.48453 0.000006 5.42226 6.471070 (1)X1(L) 1.13667 0.462649 2.45686 0.069927 -0.14785 2.421187 X1(Q) -0.28500 0.400666 -0.8611 0.450132 -1.44743 0.777427 X2(Q) -0.33500 0.400666 0.08611 0.450132 -1.44743 0.777427 Mean/constant 42.07778 0.769502 54.68186 0.000001 39.9413 44.21426 (1)X1(L) 5.0333 1.84886 -3.55990 0.023588 -11.9433 -1.47672 <td>Mean/constant</td> <td>1.810000</td> <td>0.151021</td> <td>11.98507</td> <td>0,000278</td> <td>1.39070</td> <td>2.229302</td>	Mean/constant	1.810000	0.151021	11.98507	0,000278	1.39070	2.229302			
X1(Q) −0.075000 0.320364 −0.23411 0.826395 −0.96447 0.814474 (2)X2(L) 2.033333 0.369925 5.49661 0.005340 1.06926 3.060410 X2(Q) −0.180000 0.320364 −0.66186 0.604202 −1.06947 0709474 Mean/constant 5.94667 0.188876 31.48453 0.000006 5.42226 6.471070 (1)X1(L) 1.13667 0.462649 2.45686 0.069927 −0.14786 2.421187 X1(Q) −0.28500 0.400666 -0.71132 0.516171 −1.39743 0.827427 X1(Q) −0.33500 0.400666 -0.83611 0.450132 −1.44743 0.777427 Wean/constant 42.07778 0.769502 54.66186 0.000001 39.9413 44.21426 (1)X1(L) 5.0333 1.884886 2.65445 0.056718 −0.2299 10.23662 X2(Q) −1.94167 1.832359 −1.24607 0.817743 −4.9333 4.13049 (2)X2(L) −6.	(1)X1(L)	0.076667	0.369925	0.20725	0,845938	-0.95041	1.103743			
(2)X2(L) 2.033333 0.369925 5.49661 0.005340 1.00626 3.060410 X2(Q) -0.180000 0.320364 -0.66186 0.604202 -1.06947 0709474 Mean/constant 5.94667 0.188876 31.48453 0.000006 5.42226 6.471070 (1)X1(L) 1.13667 0.462649 2.45686 0.069927 -0.14765 2.421187 X1(Q) -0.28500 0.400666 -0.71132 0.516171 -1.39743 0.827427 X2(Q) -0.33500 0.400666 -0.83611 0.450132 -1.44743 0.777427 X2(Q) -0.33500 0.400666 -0.83611 0.450132 -1.44743 0.777427 X2(Q) -0.30167 1.632359 -0.24607 0.817743 -4.9338 41.3049 (J)X2(L) -6.71000 1.884866 -3.55990 0.023588 -11.9433 -1.47672 X2(Q) -1.94167 1.632359 -1.18948 0.300029 -6.4738 2.59049 Mean/constant 75.11	X1(Q)	-0.075000	0.320364	-0.23411	0,826395	-0.96447	0.814474			
X2(Q) -0.180000 0.320364 -0.56186 0.604202 -1.06947 0709474 Wean/constant 5.94667 0.188876 31.48453 0.000006 5.42226 6.471070 (I)X1(L) 1.13667 0.482649 2.45686 0.069927 -0.14785 2.421187 X1(Q) -0.28500 0.400666 -0.71132 0.516171 -1.39743 0.827427 (I)X1(L) -0.33500 0.462649 4.50305 0.010797 -3.36785 -0.798813 X2(Q) -0.33500 0.460666 -0.83611 0.450132 -1.44743 0.777427 Mean/constant 42.07778 0.769502 54.68186 0.000001 39.9413 44.21266 X1(Q) -0.40167 1.632359 -0.24607 0.817743 -4.9338 4.13049 (I)X1(L) -6.71000 1.884886 -3.55990 0.023588 -11.9433 -1.47672 X2(Q) -1.94167 1.632359 -1.18948 0.300029 -6.4738 2.59049 Wean/constant	(2)X2(L)	2.033333	0.369925	5.49661	0,005340	1.00626	3.060410			
y y Mean/constant 5.94667 0.188876 31.48453 0.000006 5.42226 6.471070 (1)X1(L) 1.13667 0.462649 2.45686 0.069927 -0.14785 2.421187 X1(Q) -0.28500 0.400666 -0.71132 0.516171 -1.39743 0.827427 (2)X2(L) -2.08333 0.462649 4.50305 0.010797 -3.36785 -0.798813 X2(Q) -0.33500 0.400666 -0.83611 0.450132 -1.44743 0.777427 Wean/constant 42.07778 0.769502 54.68186 0.000001 39.9413 44.21426 (1)X1(L) 5.00333 1.884886 2.85445 0.056718 -0.2299 10.23662 X1(Q) -0.40167 1.632359 -0.24607 0.817743 -4.9338 4.13049 (2)X2(L) -6.71000 1.884886 -3.55990 0.023588 -11.9433 -1.47672 X2(Q) -1.94167 1.632359 -0.24607 0.817743 -4.9338 1.407672	X2(Q)	-0.180000	0.320364	-0.56186	0.604202	-1.06947	0709474			
Mean/constant 5.94667 0.188876 31.48453 0.000006 5.42226 6.471070 (1)X1(L) 1.13667 0.462649 2.45686 0.069927 -0.14785 2.421187 X1(Q) -0.28500 0.400666 -0.71132 0.516171 -1.39743 0.827427 (2)X2(L) -2.08333 0.462649 4.50305 0.010797 -3.36785 -0.798813 X2(Q) -0.33500 0.400666 -0.83611 0.450132 -1.44743 0.777427 ys Mean/constant 42.07778 0.769502 54.68186 0.000001 39.9413 44.21426 (1)X1(L) 5.00333 1.884886 -3.55990 0.023588 -11.9433 -1.47672 X1(Q) -0.40167 1.632359 -0.24607 0.817743 -4.9338 4.13049 (2)X2(L) -6.71000 1.884886 -3.55990 0.0023588 -11.9433 -1.47672 X2(Q) -1.4167 1.632359 -0.24607 0.817743 -4.9338 4.13049 <		•	•	y4						
(1)X1(L) 1.13667 0.462649 2.45686 0.069927 -0.14785 2.421187 X1(Q) -0.28500 0.400666 -0.71132 0.516171 -1.39743 0.827427 (2)X2(L) -2.08333 0.462649 4.50305 0.010797 -3.36785 -0.798813 X2(Q) -0.33500 0.400666 -0.83611 0.450132 -1.44743 0.777427 Mean/constant 42.07778 0.769502 54.68186 0.000001 39.9413 44.21426 (1)X1(L) 5.00333 1.884866 2.65445 0.056718 -0.2299 10.23662 X1(Q) -0.40167 1.632359 -0.24607 0.817743 -4.9338 +1.3049 (2)X2(L) -6.71000 1.884886 -3.55990 0.023588 -11.9433 -1.47672 X2(Q) -1.94167 1.632359 -1.18948 0.300029 -6.4738 2.59049 Valeat Vs - - -4.9333 1.476797 -0.26879 -0.915103 2.1828 11.48382 </td <td>Mean/constant</td> <td>5.94667</td> <td>0.188876</td> <td>31.48453</td> <td>0.000006</td> <td>5.42226</td> <td>6.471070</td>	Mean/constant	5.94667	0.188876	31.48453	0.000006	5.42226	6.471070			
X1(Q) −0.28500 0.400666 −0.71132 0.516171 −1.39743 0.827427 (2)X2(L) −2.08333 0.462649 4.50305 0.010797 −3.36785 −0.798813 X2(Q) −0.33500 0.400666 -0.83611 0.450132 -1.44743 0.777427 Wash Ws Vs Vs Vs Vs Vs Mean/constant 42.07778 0.769502 54.66186 0.000001 39.9413 44.21426 (1)X1(L) 5.00333 1.884886 -3.55990 0.023588 −11.9433 −1.47672 X2(Q) −1.94167 1.632359 −1.18948 0.300029 −6.4738 2.59049 Vs Vs Vs Vs Vs Vs Vs Mean/constant 75.1111 0.789593 95.12639 0.000000 72.9189 77.30337 (1)X1(L) −6.33333 1.934099 −3.27456 0.036657 −11.7033 −0.96341 X1(Q) 6.83333 1.674979 4.07965	(1)X1(L)	1.13667	0.462649	2.45686	0.069927	-0.14785	2.421187			
(2)X2(L) -2.08333 0.462649 -4.50305 0.010797 -3.36785 -0.798813 X2(Q) -0.33500 0.400666 -0.83611 0.450132 -1.44743 0.777427 ys Mean/constant 42.07778 0.769502 54.68186 0.000001 39.9413 44.21426 (1)X1(L) 5.00333 1.884886 2.65445 0.056718 -0.2299 10.23662 X1(Q) -0.40167 1.632359 -0.24607 0.817743 -4.9338 4.13049 (2)X2(L) -6.71000 1.884886 -3.55990 0.023588 -11.9433 -1.47672 X2(Q) -1.94167 1.632359 -1.18948 0.300029 -6.4738 2.59049 Wean/constant 75.1111 0.789593 95.16239 0.000000 72.9189 77.30337 (1)X1(L) -6.33333 1.674979 4.07965 0.015103 2.1828 11.48382 (2)X2(L) 9.66667 1.934099 4.99802 0.007501 4.2967 15.03659 <td>X1(Q)</td> <td>-0.28500</td> <td>0.400666</td> <td>-0.71132</td> <td>0.516171</td> <td>-1.39743</td> <td>0.827427</td>	X1(Q)	-0.28500	0.400666	-0.71132	0.516171	-1.39743	0.827427			
X2(Q) -0.33500 0.400666 -0.83611 0.450132 -1.44743 0.777427 Wean/constant 42.07778 0.769502 54.68186 0.000001 39.9413 44.21426 (1)X1(L) 5.00333 1.884886 2.65445 0.056718 -0.2299 10.23662 X1(Q) -0.40167 1.632359 -0.24607 0.817743 -4.9338 4.13049 (2)X2(L) -6.71000 1.884886 -3.55990 0.023588 -11.9433 -1.47672 X2(Q) -1.94167 1.632359 -1.18948 0.300029 -6.4738 2.59049 y6	(2)X2(L)	-2.08333	0.462649	-4.50305	0.010797	-3.36785	-0.798813			
ys Mean/constant 42.07778 0.769502 54.68186 0.000001 39.9413 44.21426 (1)X1(L) 5.00333 1.884886 2.65445 0.056718 -0.2299 10.23662 X1(Q) -0.40167 1.632359 -0.24607 0.817743 -4.9338 4.13049 (2)X2(L) -6.71000 1.884886 -3.55990 0.023588 -11.9433 -1.47672 X2(Q) -1.9167 1.632359 -1.18948 0.300029 -6.4738 2.59049 ////////////////////////////////////	X2(Q)	-0.33500	0.400666	-0.83611	0.450132	-1.44743	0.777427			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	y 5									
(1)X1(L) 5.00333 1.884886 2.65445 0.056718 -0.2299 10.23662 X1(Q) -0.40167 1.632359 -0.24607 0.817743 -4.9338 4.13049 (2)X2(L) -6.71000 1.884886 -3.55990 0.023588 -11.9433 -1.47672 X2(Q) -1.94167 1.632359 -1.18948 0.300029 -6.4738 2.59049 Vs Mean/constant 75.1111 0.789593 95.12639 0.000000 72.9189 77.30337 (1)X1(L) -6.33333 1.934099 -3.27456 0.030657 -11.7033 -0.96341 X1(Q) 6.83333 1.674979 4.07965 0.015103 2.1828 11.48382 (2)X2(L) 9.66667 1.934099 4.99802 0.007501 4.2967 15.03659 X2(Q) -4.1667 1.674979 -2.48759 0.067659 -8.8172 0.48382 (1)X1(L) 9.66667 1.934094 12.79333 0.000215 42.5418 66.12490	Mean/constant	42.07778	0.769502	54.68186	0.000001	39.9413	44.21426			
X1(Ω) -0.40167 1.632359 -0.24607 0.817743 -4.9338 4.13049 (2)X2(L) -6.71000 1.884886 -3.55990 0.023588 -11.9433 -1.47672 X2(Q) -1.94167 1.632359 -1.18948 0.300029 -6.4738 2.59049 Vs Vs Vs Vs Vs Vs Vs Mean/constant 75.1111 0.789593 95.12639 0.000000 72.9189 77.30337 (1)X1(L) -6.33333 1.934099 -3.27456 0.030657 -11.7033 -0.96341 X1(Q) 6.83333 1.674979 4.07965 0.015103 2.1828 11.48382 (2)X2(L) 9.66667 1.934099 4.99802 0.007501 4.2967 15.03659 X2(Q) -4.1667 1.674979 -2.48759 0.067659 -8.8172 0.48382 (2)X2(L) 9.66667 1.934099 -1.76231 0.152804 -47.2167 10.55000 X1(Q) 6.43333 1.040299 -1.76	(1)X1(L)	5.00333	1.884886	2.65445	0.056718	-0.2299	10.23662			
(2)X2(L) -6.71000 1.884886 -3.55990 0.023588 -11.9433 -1.47672 X2(Q) -1.94167 1.632359 -1.18948 0.300029 -6.4738 2.59049 Vs Vs Vs Vs Vs Vs Vs Mean/constant 75.1111 0.789593 95.12639 0.000000 72.9189 77.30337 (1)X1(L) -6.33333 1.934099 -3.27456 0.030657 -11.7033 -0.96341 X1(Q) 6.83333 1.674979 4.07965 0.015103 2.1828 11.48382 (2)X2(L) 9.66667 1.934099 4.99802 0.007501 4.2967 15.03659 X2(Q) -4.16667 1.674979 -2.48759 0.067659 -8.8172 0.48382 V y - - - - - - 0.152804 -47.2167 10.55000 X1(Q) 8.5000 9.00925 0.94347 0.398860 -16.5137 33.51370 (2)X2(L) -1.00	X1(Q)	-0.40167	1.632359	-0.24607	0.817743	-4.9338	4.13049			
X2(Q) -1.94167 1.632359 -1.18948 0.300029 -6.4738 2.59049 Wean/constant75.1111 0.789593 95.12639 0.00000 72.9189 77.30337 (1)X1(L) -6.33333 1.934099 -3.27456 0.030657 -11.7033 -0.96341 X1(Q) 6.83333 1.674979 4.07965 0.015103 2.1828 11.48382 (2)X2(L) 9.66667 1.934099 4.99802 0.007501 4.2967 15.03659 X2(Q) -4.16667 1.674979 -2.48759 0.067659 -8.8172 0.48382 Wean/constant 54.3333 4.24700 12.79333 0.000215 42.5418 66.12490 (1)X1(L) -18.3333 10.40299 -1.76231 0.152804 -47.2167 10.55000 X1(Q) 8.5000 9.00925 0.94347 0.398860 -16.5137 33.51370 (2)X2(L) -1.0000 10.40299 -0.09613 0.928044 -29.8833 27.88333 X2(Q) 0.5000 9.00925 0.05550 0.958403 -24.5137 25.51370 Wean/constant 320.4444 7.20682 44.46405 0.000002 300.4351 340.4538 (1)X1(L) 25.0000 17.65303 1.41619 0.229663 -24.0127 74.0127 X1(Q) -24.1667 15.28798 -1.58076 0.189087 -66.6129 18.2796 (2)X2(L) -29.6667 17.65303 -1.68076 0.168148 -78.6793 <td>(2)X2(L)</td> <td>-6.71000</td> <td>1.884886</td> <td>-3.55990</td> <td>0.023588</td> <td>-11.9433</td> <td>-1.47672</td>	(2)X2(L)	-6.71000	1.884886	-3.55990	0.023588	-11.9433	-1.47672			
y6 Mean/constant 75.11111 0.789593 95.12639 0.000000 72.9189 77.30337 (1)X1(L) -6.33333 1.934099 -3.27456 0.030657 -11.7033 -0.96341 X1(Q) 6.83333 1.674979 4.07965 0.015103 2.1828 11.48382 (2)X2(L) 9.66667 1.934099 4.99802 0.007501 4.2967 15.03659 X2(Q) -4.16667 1.674979 -2.48759 0.067659 -8.8172 0.48382 Wean/constant 54.3333 4.24700 12.79333 0.000215 42.5418 66.12490 (1)X1(L) -18.3333 10.40299 -1.76231 0.152804 -47.2167 10.55000 X1(Q) 8.5000 9.00925 0.94347 0.398860 -16.5137 33.51370 (2)X2(L) -1.0000 10.40299 -0.09613 0.928044 -29.8833 27.88333 X2(Q) 0.5000 9.0925 0.05550 0.958403 -24.5137 25.51370 <th< td=""><td>X2(Q)</td><td>-1.94167</td><td>1.632359</td><td>-1.18948</td><td>0.300029</td><td>-6.4738</td><td>2.59049</td></th<>	X2(Q)	-1.94167	1.632359	-1.18948	0.300029	-6.4738	2.59049			
Mean/constant 75.11111 0.789593 95.12639 0.00000 72.9189 77.30337 (1)X1(L) -6.33333 1.934099 -3.27456 0.030657 -11.7033 -0.96341 X1(Q) 6.83333 1.674979 4.07965 0.015103 2.1828 11.48382 (2)X2(L) 9.66667 1.934099 4.99802 0.007501 4.2967 15.03659 $X2(Q)$ -4.16667 1.674979 -2.48759 0.007511 4.2967 15.03659 VT VT VT VT VT VT VT Mean/constant 54.3333 10.40299 -1.76231 0.152804 -47.2167 10.55000 $X1(Q)$ 8.5000 9.00925 0.994347 0.398860 -16.5137 33.51370 $(2)X2(L)$ -1.0000 10.40299 -0.09613 0.928044 -29.8833 27.88333 $X2(Q)$ 0.5000 9.0925 0.05550 0.958403 -24.5137 25.51370 $VS(Q)$ $VS(Q)$ 17.65303 1.41619 0.229663 -24.0127 74.0127 $X1$	<u> </u>									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Mean/constant	75.11111	0.789593	95.12639	0.000000	72.9189	77.30337			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)X1(L)	-6.33333	1.934099	-3.27456	0.030657	-11.7033	-0.96341			
(2)X2(L)9.666671.9340994.998020.0075014.296715.03659X2(Q) -4.16667 1.674979 -2.48759 0.067659 -8.8172 0.48382 yrMean/constant 54.3333 4.24700 12.79333 0.000215 42.5418 66.12490 (1)X1(L) -18.3333 10.40299 -1.76231 0.152804 -47.2167 10.55000 X1(Q) 8.5000 9.00925 0.94347 0.398860 -16.5137 33.51370 (2)X2(L) -1.0000 10.40299 -0.09613 0.928044 -29.8833 27.88333 X2(Q) 0.5000 9.00925 0.05550 0.958403 -24.5137 25.51370 ysMean/constant 320.4444 7.20682 44.46405 0.000002 300.4351 340.4538 (1)X1(L) 25.0000 17.65303 1.41619 0.229663 -24.0127 74.0127 X1(Q) -24.1667 15.28798 -1.58076 0.189087 -66.6129 18.2796 (2)X2(L) -29.6667 17.65303 -1.68054 0.168148 -78.6793 19.3460 X2(Q) 19.8333 15.28798 1.29732 0.264287 -22.6129 62.2796	X1(Q)	6.83333	1.674979	4.07965	0.015103	2.1828	11.48382			
X2(Q) -4.16667 1.674979 -2.48759 0.067659 -8.8172 0.48382 Wean/constant 54.3333 4.24700 12.79333 0.000215 42.5418 66.12490 (1)X1(L) -18.3333 10.40299 -1.76231 0.152804 -47.2167 10.55000 X1(Q) 8.5000 9.00925 0.94347 0.398860 -16.5137 33.51370 (2)X2(L) -1.0000 10.40299 -0.09613 0.928044 -29.8833 27.88333 X2(Q) 0.5000 9.00925 0.05550 0.958403 -24.5137 25.51370 VsMean/constant 320.4444 7.20682 44.46405 0.000002 300.4351 340.4538 (1)X1(L) 25.0000 17.65303 1.41619 0.229663 -24.0127 74.0127 X1(Q) -24.1667 15.28798 -1.58076 0.189087 -66.6129 18.2796 (2)X2(L) -29.6667 17.65303 -1.68054 0.168148 -78.6793 19.3460 X2(Q) 19.8333 15.28798 1.29732 0.264287 -22.6129 62.2796	(2)X2(L)	9.66667	1.934099	4.99802	0.007501	4.2967	15.03659			
yrMean/constant 54.3333 4.24700 12.79333 0.000215 42.5418 66.12490 $(1)X1(L)$ -18.3333 10.40299 -1.76231 0.152804 -47.2167 10.55000 X1(Q) 8.5000 9.00925 0.94347 0.398860 -16.5137 33.51370 $(2)X2(L)$ -1.0000 10.40299 -0.09613 0.928044 -29.8833 27.88333 X2(Q) 0.5000 9.00925 0.05550 0.958403 -24.5137 25.51370 VsMean/constant 320.4444 7.20682 44.46405 0.000002 300.4351 340.4538 $(1)X1(L)$ 25.0000 17.65303 1.41619 0.229663 -24.0127 74.0127 X1(Q) -24.1667 15.28798 -1.58076 0.189087 -66.6129 18.2796 $(2)X2(L)$ -29.6667 17.65303 -1.68054 0.168148 -78.6793 19.3460 X2(Q) 19.8333 15.28798 1.29732 0.264287 -22.6129 62.2796	X2(Q)	-4.16667	1.674979	-2.48759	0.067659	-8.8172	0.48382			
Mean/constant 54.3333 4.24700 12.79333 0.000215 42.5418 66.12490 $(1)X1(L)$ -18.3333 10.40299 -1.76231 0.152804 -47.2167 10.55000 $X1(Q)$ 8.5000 9.00925 0.94347 0.398860 -16.5137 33.51370 $(2)X2(L)$ -1.0000 10.40299 -0.09613 0.928044 -29.8833 27.88333 $X2(Q)$ 0.5000 9.00925 0.05550 0.958403 -24.5137 25.51370 y ₈ Mean/constant 320.4444 7.20682 44.46405 0.000002 300.4351 340.4538 $(1)X1(L)$ 25.0000 17.65303 1.41619 0.229663 -24.0127 74.0127 $X1(Q)$ -24.1667 15.28798 -1.58076 0.189087 -66.6129 18.2796 $(2)X2(L)$ -29.6667 17.65303 -1.68054 0.168148 -78.6793 19.3460 $X2(Q)$ 19.8333 15.28798 1.29732 0.264287 -22.6129 62.2796				V7						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean/constant	54.3333	4.24700	12.79333	0.000215	42.5418	66.12490			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(1)X1(L)	-18.3333	10.40299	-1.76231	0.152804	-47.2167	10.55000			
V2(L) -1.0000 10.40299 -0.09613 0.928044 -29.8833 27.88333 X2(Q) 0.5000 9.00925 0.05550 0.958403 -24.5137 25.51370 y ₈ Mean/constant 320.4444 7.20682 44.46405 0.000002 300.4351 340.4538 (1)X1(L) 25.0000 17.65303 1.41619 0.229663 -24.0127 74.0127 X1(Q) -24.1667 15.28798 -1.58076 0.189087 -66.6129 18.2796 (2)X2(L) -29.6667 17.65303 -1.68054 0.168148 -78.6793 19.3460 X2(Q) 19.8333 15.28798 1.29732 0.264287 -22.6129 62.2796	X1(Q)	8.5000	9.00925	0.94347	0.398860	- 16.5137	33.51370			
X2(Q) 0.5000 9.00925 0.05550 0.958403 -24.5137 25.51370 Vs	(2)X2(L)	-1.0000	10.40299	-0.09613	0.928044	-29.8833	27.88333			
ys ys Mean/constant 320.4444 7.20682 44.46405 0.000002 300.4351 340.4538 (1)X1(L) 25.0000 17.65303 1.41619 0.229663 -24.0127 74.0127 X1(Q) -24.1667 15.28798 -1.58076 0.189087 -66.6129 18.2796 (2)X2(L) -29.6667 17.65303 -1.68054 0.168148 -78.6793 19.3460 X2(Q) 19.8333 15.28798 1.29732 0.264287 -22.6129 62.2796	X2(Q)	0.5000	9.00925	0.05550	0.958403	-24.5137	25.51370			
Mean/constant 320.4444 7.20682 44.46405 0.000002 300.4351 340.4538 (1)X1(L) 25.0000 17.65303 1.41619 0.229663 -24.0127 74.0127 X1(Q) -24.1667 15.28798 -1.58076 0.189087 -66.6129 18.2796 (2)X2(L) -29.6667 17.65303 -1.68054 0.168148 -78.6793 19.3460 X2(Q) 19.8333 15.28798 1.29732 0.264287 -22.6129 62.2796	Vo									
(1)X1(L) 25.0000 17.65303 1.41619 0.229663 -24.0127 74.0127 X1(Q) -24.1667 15.28798 -1.58076 0.189087 -66.6129 18.2796 (2)X2(L) -29.6667 17.65303 -1.68054 0.168148 -78.6793 19.3460 X2(Q) 19.8333 15.28798 1.29732 0.264287 -22.6129 62.2796	Mean/constant	320.4444	7,20682	44,46405	0.000002	300.4351	340,4538			
X1(Q) -24.1667 15.28798 -1.58076 0.189087 -66.6129 18.2796 (2)X2(L) -29.6667 17.65303 -1.68054 0.168148 -78.6793 19.3460 X2(Q) 19.8333 15.28798 1.29732 0.264287 -22.6129 62.2796	(1)X1(L)	25.0000	17.65303	1.41619	0.229663	-24.0127	74.0127			
(2)X2(L) -29.6667 17.65303 -1.68054 0.168148 -78.6793 19.3460 X2(Q) 19.8333 15.28798 1.29732 0.264287 -22.6129 62.2796	X1(Q)	-24,1667	15,28798	-1.58076	0.189087	-66.6129	18,2796			
X2(Q) 19 8333 15 28798 1 29732 0 264287 -22 6120 62 2796	(2)X2(L)	-29.6667	17.65303	-1.68054	0.168148	-78.6793	19.3460			
	X2(Q)	19.8333	15.28798	1.29732	0.264287	-22.6129	62.2796			

Table 3. ANOVA table analysis for dependent variables (y_1-y_8)

The statistical analysis of the effect of independent variables (x_1, x_2) on the dependent variables characterizing the morphology of materials demonstrated that the substrate molar ratio in the reaction mixture $(x_2(L) 9.67)$ and the pressure of the process $(x_1(L) - 6.33)$ had a statistically significant influence on their oil number (y_6) . The lower the pressure and the higher the Ca²⁺:

 PO_4^{3-} molar ratio, the higher oil number tended to be, characterizing the sorption properties of the products. Both of the input variables had no effect on the specific surface area and on the average particle size of the precipitated phosphates. Their specific surface area (y₇) and particle size (y₈) were in the range of 34–76 m²/g and 280–370 nm, respectively.

The spatial graphs in Figure 2 show the effect of pressure and Ca²⁺: PO₄³⁻ ratio in the reaction mixture on the dependent variables y_{1-8} . The depicted areas can help to assess the influence of the above process parameters on the properties of precipitated phosphates. Based on that, a conclusion was drawn that only the substrate molar ratio affected the content of aluminum, calcium and molybdenum in the products, which is consistent with the results of the statistical analysis. The specific surface area was found to be slightly affected by the pressure of the process, which in the statistical assessment of the effects was described to have a negligible effect.

The shape of the surface presented in Figure 3, depicting the effect of variables x_1 and x_2 on the oil number of the products, suggest the influence of both parameters with a maximum observed for the average pressure. The finding is consistent with the statistical analysis of $(x_2(L) 9.67; x_1(L) -6.33; x_1(Q) 6.83)$ effects. However, the interpretation of the shape in terms of the effect of the independent variables on the content of nitrogen

Figure 3. Response surface for dependent variables x_{1-2} to independent variables y_{1-8}

and phosphates and the particle size $(y_4, y_5, and y_8)$ in the products, is anything but an easy task.

The molar ratio of the substrates had a significant effect on the first two input variables. However, the shape of the surface seems to suggest the effect of the pressure of the process. The effect of variables x_1 and x_2 on the particle size of the precipitated phosphates was thought to be statistically insignificant. The surface analysis suggests that products with the biggest particle size can be obtained at the Ca²⁺: PO₄³ molar ratio of 0.2 : 1 and maximum pressure values.

Figure 4 presents a comparison of SEM images for the products precipitated in the reaction mixture with the Al³⁺: Ca²⁺: Mo⁶⁺: PO₄³⁻ molar ratios of (a) 0.67 : 0.33 : 0.33 : 1 (a); 0.67 : 0.2 : 0.2 : 1 (b), and 0.67 : 0.07 : 0.07 : 1 and (c) at the pressure of 2.1 MPa. The shape of particles was observed to be dependent on the molar ratio of the reagents. With the decreasing content of Ca²⁺ and Mo⁶⁺ ions in the substrates, the product particle size was bigger. The observed associations correlated with the content of the $(NH_4)_3Al_2(PO_4)_3$ crystalline phase, whose share was bigger at the lower Al³⁺ : Ca²⁺: Mo⁶⁺: PO₄³⁻ reagent molar ratio of 0.67 : 0.07 : 0.07 : 1. The particles of products with the highest content of the crystalline phase had the biggest size, although the statistical assessment did not show any effect of the reagent molar ratio on the property.

The relationship between the chemical composition of the prepared aluminum phosphates modified with ammonium, calcium and molybdenum and their corrosion inhibition efficiency was investigated using the presented Tafel test results.

Table 4 presents the results of corrosion inhibition efficiency tests for different extracts. The results were compared with those of FC-M2 zinc phosphate and FAC

Figure 4. SEM images of the aluminum phosphates modified ammonium, calcium and molybdenium precipitated from reaction mixture with a molar ratio Al^{3+} : Ca^{2+} : Mo^{6+} : PO_4^{3-} equal: (a) 0.67 : 0.33 : 0.33 : 1; (b) 0.67 : 0.2 : 0.2 : 1 (b) and (c) 0.67 : 0.07 : 0.07 : 1 at the pressure of 2.1 MPa

 Table 4. Potentiodynamic polarization test result for steel immersed in extract of phosphate pigments in 3.5 wt% NaCl aqueous solution

Phosphate acronym	I _{corr} [μΑ/cm²]	E _{corr} [mV vs. SCE]	P [mm/year]	η [%]
-	2.17	-799	0.025	_
FAC	1.1	-725	0.013	49
FC-M2	1.2	-796	0.014	45
AACMPH1	2.71	-775	0.0316	-25
AACMPH2	1.13	-779	0.0132	48
AACMPH3	1.44	-767	0.0168	34
AACMPH4	2.81	-767	0.0327	-29
AACMPH5	1.91	-771	0.0222	12
AACMPH6	2.26	-776	0.0263	-4
AACMPH7	2.16	-779	0.0251	0.5
AACMPH8	2.14	-772	0.0249	1.4
AACMPH9	1.99	-776	0.0232	8

aluminum-zinc phosphate (manufactured by Złoty Stok Antykorozja Sp. z o.o. in Złoty Stok, Poland).

Following the analysis of results, the corrosion of steel was concluded to proceed the slowest with AACMPH2 and 3 materials out of all the tested extracts of modified aluminum phosphates, precipitated in a microwave reactor. The rates of corrosion for AACMPH2 and 3 were 0.0132 mm/year and 0.0168 mm/year, respectively. While comparing the obtained results with those of steel investigated in a NaCl aqueous solution, the corrosion inhibition efficiency for phosphates obtained in the experiments was 48% and 34%, respectively. The effectiveness was close to that of commercial anti-corrosive pigments (FAC and FC-M2). The lowest corrosion inhibition efficiency was determined for phosphates used in the experiments involving AACMPH1 and 4, which amounted to -25% and -29%, respectively. Corrosion was observed to proceed with the slowest rate in the phosphate extracts with the lowest Ca to Mo molar ratio and with a higher total amount of aluminum and ammonium moles per one mole of phosphates.

Sediments precipitated in Tafel tests (Table 5) were examined using XRD and SEM-EDX analysis. Unfortunately, the identification of the crystalline phases in obtained powders was impossible due to their amorphous nature. The powders had different contents of aluminum, calcium, iron and phosphates. Molybdenum content was not determined. No correlation was found between the chemical properties of the extracted phosphates, the corrosion inhibition efficiency examined in potentiodynamic tests and the chemical composition of corrosion products. anti-corrosive pigments (FAC and FC-M2) which were used for comparison purposes.

The statistical assessment of planned examinations enables a selection of process parameters conducive to obtaining aluminum phosphates modified with ammonia, calcium and molybdenum with preset physicochemical properties.

ACKNOWLEDGEMENTS

This work was supported by the National Centre for Science in Poland under project for 2011–2014.

Phosphate acronym	Al	Ca	Мо	Fe	Р	Molar ratio of
			Content [wt%	AI : Ca : Mo : Fe : P		
AACMPH1	2.49	0.44	0	15.41	3.18	0.90 : 0.11 : 0 : 2.69 : 1
AACMPH2	1.77	0.03	0	2.43	0.10	20.30 : 0.23 : 0 : 13.47 : 1
AACMPH3	0.58	0.29	0	22.98	5.39	0.12 : 0.04 : 0 : 2.36 : 1
AACMPH4	14.32	2.90	0	31.08	2.07	7.94 : 1.08 : 0 : 8.33 : 1
AACMPH5	1.99	0.34	0	4.89	1.55	1.47 : 0.17 : 0 : 1.75 : 1
AACMPH6	4.71	1.02	0	31.30	2.29	2.36 : 0.34 : 0 : 7.58 : 1
AACMPH7	11.29	1.67	0	53.27	0.97	13.35 : 1.33 : 0 : 30.45 : 1
AACMPH8	4.38	0.91	0	7.78	1.98	2.54 : 0.36 : 0 : 2.18 : 1
AACMPH9	2.36	0.63	0	14.46	2.53	1.07 : 0.19 : 0 : 3.17 : 1

 Table 5. EDX analysis of sediments precipitated during the electrochemical studies

CONCLUSIONS

Crystalline materials with varied content of nitrogen, aluminum, molybdenum, calcium, phosphorus and crystalline phases depending on process parameters were obtained using the hydrothermal method.

It was statistically demonstrated that the content of Al, Ca, Mo, N and P in the products was dependent on the variable x_2 , i.e. on the Al³⁺ : Ca²⁺ : Mo⁶⁺ : PO₄³⁻ reagent molar ratio. The input variable x_1 (pressure) had no statistically significant effect on the dependent variables y_{1-5} . The input variables did not have any statistically significant effect on either S_{BET} specific surface area or the particle size of the obtained products. The pressure and the reagent molar ratio were shown to have a significant effect on oil number.

The highest corrosion inhibition efficiency for the phosphates discussed above was 48% and 34%, respectively. The efficiency was close to that of commercial

LITERATURE CITED

1. Benda, P. & Kalendová, A. (2013). Anticorrosion Properties of Pigments based on Ferrite Coated Zinc Particles. *Phys. Procedia*. 44, 185–194. DOI: 10.1016/j.phpro.2013.04.023.

2. Directive 2004/42/CE of the European Parliament and of the Council of 21 April 2004 on the limitation of emissions of volatile organic compounds due to the use of organic solvents in certain paints and varnishes and vehicle refinishing products and amending Directive 1999, 13/EC.

3. United States Environmental Protection Agency. Retrieved Decmember 1, 2014, from http://www.epa.gov/iaq/voc.html

4. Mousavifard, S.M., MalekMohammadi Nouri, P., Attar, M.M. & Ramezanzadeh, B. (2013). The effects of zinc aluminum phosphate (ZPA) and zinc aluminum polyphosphate (ZAPP) mixtures on corrosion inhibition performance of epoxy/ polyamide coating. *Ind. Eng. Chem. Res.* 19, 1031–1039. DOI: 10.1016/j.jiec.2012.11.027.

5. Kołodziejski, R., Zieliński, J. & Grudzińska, E. (2009). Effect of microwaves on properties of desulfurized vacuum residue of crude oil. *Przem. Chem.* 88(11), 1188–1190.

6. Deyab, M.A. & Keera, S.T. (2014). Effect of nano-TiO2 particles size on the corrosion resistance of alkyd coating. *Mater. Chem. Phys.* 146, 406–411. DOI: 10.1016/j.matchem-phys.2014.03.045.

7. Grzmil, B., Kic, B. & Lubkowski, K. (2007). Studies on obtaining of zinc phosphate nanomaterials. *Rev. Adv. Mater. Sci.* 14, 46–48.

8. Łuczka, K., Grzmil, B., Srenscek-Nazzal, J. & Kowalczyk, K. (2013) Studies on obtaining of aluminium ammonium calcium phosphates. *J. Ind. Eng. Chem.* 19, 1000–1007. DOI: 10.1016/j.jiec.2012.11.023.

9. Łuczka, K., Sibera, D., Smorowska, A. & Grzmil, B. (2013) Preparation of aluminium ammonium calcium phosphates using microwave radiation. *Chem. Pap.* 67(9), 1210–1217. DOI: 10.2478/s11696-013-0326-8.

10. Varnaite – Żuravliova, S., Jankauskaite, V., Guobiene, A. & Prosycevas, I. (2014). Investigation of optical and morphological properties of metalized nanocomposites. *Appl. Surf. Sci.* 317, 639–647. DOI: 10.1016/j.apsusc.2014.08.149.

11. Huang, H., Zhang, S., Qi, L., Yu, X. & Chen, Y. (2006). Microwave-assisted deposition of uniform thin gold film on glass surface. *Surf. Coat. Technol.* 200, 4389–4396. DOI: 10.1016/j. surfcoat.2005.02.203.

12. Gaina, L., Torje, I., Gal, E., Lupan, A., Bischin, C., Silaghi-Dumitrescu, R., Damian, G., Lönnecke, P., Cristea, C. & Silaghi-Dumitrescu, L. (2014). Microwave assisted synthesis, photophysical and redox properties of (phenothiazinyl)vinyl-pyridinium dyes. *Dyes Pigm.* 102, 315–325. DOI: /10.1016/j. dyepig.2013.10.044.

13. Beall, G.W., Duraia, E.M., El-Tantawy, F., Al-Hazmi, F. & Al-Ghamdi, A.A. (2013). Rapid fabrication of nanostructured magnesium hydroxide and hydromagnesite via microwave-assisted technique. *Powder Technol.* 234, 26–31. DOI: 10.1016/j. powtec.2012.09.029.

14. Box, G.E.P., Hunter, J.S. & Hunter, W.G. (2005). *Statistics for Experimenters*. Hoboken, NJ: Wiley – Interscience.

15. Minczewski, J. & Marczenko, Z. (2005). *Chemia analityczna*. Warszawa, PWN.

16. Orion Ammonia Electrode. (2003). Instruction manual, Thermo Electron Corporation. Texas, USA.

17. Polish Committee for Standardization. (1999). General methods of test for pigments and extenders – Part 5: Determination of oil absorption value. PN EN ISO 787-5:1995, Warsaw.