Preparation, properties and potential applications of a photocurable varnish with pleasant limonene smell

Open access

Abstract

Photocurable materials which are obtained on the basis of urethane acrylate resins are often used in the industry for the production varnishes or protective coatings. The main disadvantage which is connected with the utilization of these varnishes is their unpleasant smell during the process of production and curing. This work presents the photocurable varnish which was obtained on the basis of aliphatic urethane acrylate and R-(+)-limonene. The utilization of this raw materials allows to obtain the smelling coatings. The aim of this work were the studies on the influence of limonene molecules on the mechanical properties of the UV-cured coatings. These studies showed that the coatings with limonene molecules retain their properties, and are characterized by the very good adhesion, cohesion and high gloss. These kinds of varnishes can be applied for preparation of appropriate protective coatings on the surface of wood, metals, and nail plates. These protective coatings have not only pleasure smell but also can have the bactericidal and fungicidal properties. The studies performed with Escherichia coli ATCC29425 and Candida albicans confirmed these properties.

1. Kunwong, D., Sumanochitraporn, N. & Kaewpirom, S. (2011). Curing behavior of a UV-curable coating based on urethane acrylate oligomer: the influence of reactive monomers. Songklanakarin J. Sci. Technol. 33(2), 201–207.

2. Alshuiref, A.A., Ibrahim, H.G., Abduallah, A. & Edali, M.A. (2013). Thermal and mechanical analysis of urethane acrylate graft copolymer, Part A: Urethane macromonomer base on TDI and EG. Inter. J. Chem. 5(1), DOI: 10.5539/ijc.v5n1p58.

3. Milinaviciute, A., Jankauskaite, V. & Narmontas, P. (2011). Properties of UV-curable hyperbranched urethane-acrylate modified acrylic monomer coatings. Mater. Sci. (Medziagotyra) 17(4). http://dx.doi.org/10.5755/j01.ms.17.4.772.

4. Segurola, J., Allen, N., Edge, M. & Roberts, I. (1999). Photochemistry and photoinduced chemical crosslinking activity of acrylated prepolymers by several commercial type I far UV photoinitiators. Polymer Degrad. Stabil. 65, 153–160.

5. Sharama, S. & Srivastawa, A.K. (2005). Free radical copolimerization of limonene with buthyl methacrylane. Synthesis and characterization. Indian J. Technol. 12, 62–67.

6. Świderska, J., Czech, Z. & Kowalczyk, A. (2013). Polymerization shrinkage by investigation of uv curable dental restorative composites containing multifunctional methacrylates. Pol. J. Chem. Technol. 15(2), 81–85. DOI: 10.2478/pjct-2013-0027.

7. Pakdel, H., Pantea, D.M. & Roy, C. (2001). Production of DL-limonene by vacuum pyrolysis of used tires. J. Analyt. Appl. Pyrol. 57, 91–107. DOI: 10.1016/S0165-2370(00)00136-4.

8. Mishra, G. & Srivastava, A.K. (2005). Side-Chain liquidcrystalline polymers with a limonene-co-methyl methacrylate main chain: Synthesis and characterization of polymers with phenyl benzoate. J. Appl. Polym. Sci. 102(5), 4595–4600. DOI: 10.1002/app.24130.

9. Mishra, R.S., Mishra, A.K. & Raju, K.V.S.N. (2009). Synthesis and property study of UV-curable hyperbranched polyurethane acrylate/ZnO hybrid coatings. Eur. Polym. J. 45, 960–966. DOI: 10.1016/j.eurpolymj.2008.11.023.

10. Sharama, S. & Srivastava, A.K. (2006). Radical copolymerization of limonene with N-vinylpyrrolidone: synthesis and characterization. Designed Monom. Polym. 9(5), 503–516. DOI: 10.1163/156855506778538001.

11. Hebeish, A., Moustafa, M.G., Hamdy, I.A., EL-Saw, S.M. & Abdel-Mohdy, F.A. (2008). Preparation of durable insect repellent cotton fabric: Limonene as insecticide. Carbohydr. Polym. 74, 268–273. DOI: 10.1016/j.carbpol.2008.02.013.

12. Arrieta, M.P., López, J., Ferrándiz, S. & Peltzer, M.A. (2013). Characterization of PLA-limonene blends for food packaging applications. Polym. Testing. 32, 760–769. DOI: 10.1016/j.polymertesting.2013.03.016.

13. Karlberg A. T., Magnusson K. & Nilsson U. (1992). Air oxidation of dlimonene (the citrus solvent) creates potent allergen. Contact Dermatitis 5, 332–340. DOI: 10.1111/j.1600-0536.1992.tb00129.x.

14. Ciriminna, R., Lomeli-Rodriguez, M., Cara, P.D., Lopez-Sanchez, A. & Pagliaro, M. (2014). Limonene: a versatile chemical of the bioeconomy. Chem. Commun. 50, 15288–15296. DOI: 10.1039/c4cc06147k.

15. Czech, Z., Kowalczyk, A. & Ortyl, J. (2013). Acrylic pressure-sensitive adhesives containing SiO2 nanoparticles. Pol. J. Chem. Technol. 15(1), 12–14. DOI: 10.1007/s11837-005-0177-z.

16. Czech, Z. & Kowalczyk, A. (2012). Influence of the unsaturated photoinitiators kind on the properties of uv-crosslinkable acrylic pressure-sensitive adhesives. Pol. J. Chem. Technol. 14(3), 83–87. DOI: 10.2478/v10026-012-0089-y.

17. Studer, K., Decker, Ch., Beck, E. & Schwalm, R. (2003). Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Prog. Org. Coat. 48, 92–100. DOI: 10.1016/S0300-9440(03)00120-6.

18. Wilbon, P.A., Chu, F. & Tang, Ch. (2013). Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromol. Rapid Commun. 34, 8−37. DOI: 10.1002/marc.201200513.

19. Holmes, R.S. & Misra, R.D.K. (2007). Effect of solvent type and content on monomer conversation of a model resin system as a thin film. Dent. Mater. 23, 1506–1512. DOI: 10.1016/j.dental.2007.01.007.

20. Ciba Specialty Chemicals Inc. (2001). Coating Effects Segment, Ciba IRGACURE 184, Photoinitiator, Basle.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information


IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395

Metrics

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 284 284 14
PDF Downloads 92 92 10