Thermal and kinetic analysis of pure and contaminated ionic liquid: 1-butyl-2.3-dimethylimidazolium chloride (BDMIMCl)

Open access


In this research work, thermal decomposition and kinetic analysis of pure and contaminated imidazolium based ionic liquid (IL) has been investigated. As thermal decomposition and kinetics evaluation plays a pivotal role in effective process design. Therefore, thermal stability of pure 1-butyl-2,3-dimethylimidazolium chloride (BDMIMCl) was found to be higher than the sample of IL with the addition of 20% (wt.) NH4Cl as an impurity. The activation energy of thermal degradation of IL and other kinetic parameters were determined using Coats Redfern method. The activation energy for pure IL was reduced in the presence of NH4Cl as contaminant i.e., from 58.7 kJ/mol to 46.4 kJ/mol.

1. Endres, F., MacFarlane, D. & Abbott, A. (2008). Electrodeposition from Ionic Liquids. (1st ed.). Germany: Wiley-VCH.

2. Fredlake, C.P., Crosthwaite, J.M., Hert, D.G., Aki, S.N.V.K. & Brennecke, J.F. (2004). Thermophysical Properties of Imidazolium-Based Ionic Liquids. J. Chem. Eng. Data, 49, 954–964. DOI: 10.1021/je034261a.

3. Hao, Y., Peng, J., Hu, S., Zhai, J. & Li, M. (2010). Thermal decomposition of allyl-imidazolium-based ionic liquid studied by TGA-MS analysis and DFT calculations. Therm. Acta, 501, 78–83. DOI: 10.1016/j.tca.2010.01.013.

4. Seddon, K.R., Stark, A. & María-José, T. (2000). Influence of chloride, water and organic solvents on the physical properties of ionic liquids. Pure & Appl. Chem. 72, 2275–2287. DOI: 10.1351/pac200072122275.

5. Hagiwara, R. & Ito, Y. (2000). Room temperature ionic liquids of alkyl imidazolium cations and fluoro anions. J. Fluorine Chem. 105, 221–227. DOI: 10.1016/S0022-1139(99)00267-5.

6. Stevanovic, S. & Gomes, M.F.C. (2013). Solubility of carbon dioxide, nitrous oxide, ethane, and nitrogen in 1-butyl-1-methylpyrrolidinium and trihexyl(tetradecyl)phosphonium tris(pentafluoroethyl)trifluorophosphate (eFAP) ionic liquids. J. Chem. Therm. 59, 65–71. DOI: 10.1016/j.jct.2012.11.010.

7. Ngo, H.L., LeCompte, K., Hargens, L. & McEwen, A. B. (2000). Thermal properties of imidazolium ionic liquids. Therm. Acta. No. 357–358, 97–102. DOI: 10.1016/S0040-6031(00)00373-7.

8. Joglekar, H.G., Rahman, I. & Kulkarni, B.D. (2007). The Path Ahead for Ionic Liquids. Chem. Eng. Technol., 30, 819–828. DOI: 10.1002/ceat.200600287.

9. Muhammad, A., Abdul Mutalib, M.I., Wilfred, C.D., Murugesan, T. & Shafeeq, A. (2008). Thermophysical properties of 1-hexyl-3-methyl imidazolium based ionic liquids with tetrafluoroborate, hexafluorophosphate and bis(trifluoromethylsulfonyl) imide anions. J. Chem. Therm. 40, 1433–1438. DOI: 10.1016/j.jct.2008.04.016.

10. Kamavaram, V. & Reddy, R.G. (2008). Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int. J. Therm. Sci. 47, 773–777. DOI: 10.1016/j.ijthermalsci.2007.06.012.

11. Kosmulski, M., Gustafsson, J. & Rosenholm, J.B. (2004). Thermal stability of low temperature ionic liquids revisited. Therm. Acta. 412, 47–53. DOI: 10.1016/j.tca.2003.08.022.

12. Fox, D.M., Gilman, J.W., De Long, H.C. & Trulove, P.C. (2005). TGA decomposition kinetics of 1-butyl-2,3-dimethylimidazoliumtetrafluoroborate and the thermal effects of contaminants. J. Chem. Therm. 37, 900–905. DOI: 10.1016/j.jct.2005.04.020.

13. Lazzús, J.A. (2012). A group contribution method to predict the thermal decomposition temperature of ionic liquids. J. Mol. Liquids 168, 87–93. DOI: 10.1016/j.molliq.2012.01.011.

14. Janković, B., Mentus, S. & Janković, M. (2008). A kinetic study of the thermal decomposition process of potassium meta bisulfite: Estimation of distributed reactivity model. J. Phys. Chem. Solids 69, 1923–1933. DOI: 10.1016/j.jpcs.2008.01.013.

15. Lu, C., Song, W. & Lin, W. (2009). Kinetics of biomass catalytic pyrolysis. Biotechn. Adv. 27, 583–587. DOI: 10.1016/j.biotechadv.2009.04.014.

16. Zhang, Z. & Reddy, R.G. (2002). Thermal stability of ionic liquids, TMS annual meeting.

17. Tonbul, Y. & Yurdakoc, K. (2001). Thermogravimetric Investigation of the Dehydration Kinetics of KSF, K10 and Turkish Bentonite. Turk J. Chem. 25, 333–339. DOI: 10.1080/22243682.2013.871210.

18. Kroon, M.C., Buijs, W., Peters, C.J. & Geert-Jan, W. (2007). Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids. Therm. Acta 465, 40–47. DOI: 10.1016/j.tca.2007.09.003.

19. Manikandan, G., Rajarajan, G., Jayabharathi, J. & Thanikachalam, V. (2011). Structural effects and thermal decomposition kinetics of chalcones under non-isothermal conditions. A. J. Chem., In Press. DOI: 10.1016/j.arabjc.2011.06.029.

20. Yao, F., Wu, Q., Lei, Y., Guo, W. & Xu, Y. (2008). Thermal decomposition kinetics of natural fibers: Activation energy with dynamic thermogravimetric analysi. Polym. Deg. Stabil. 93, 90–98. DOI: 10.1016/j.polymdegradstab.2007.10.012.

21. Omrani, A. & Hasankola, S.M.M. (2012). Kinetic study on solid state thermal degradation of epoxy nanocomposite containing Octasilane polyhedral oligomeric silsesquioxane. J. Non-Crystalline Sol. 358, 1656–1666. DOI: 10.1016/j.jnoncrysol.2012.04.036.

22. Meng, X., Huang, Y., Yu, H. & Lv, Z. (2007). Thermal degradation kinetics of polyimide containing 2,6-benzobisoxazole units. Polym. Deg. Stabil. 92, 962–967. DOI: 10.1016/j.polymdegradstab.2007.03.005.

23. Vasconcelos, G. da C., Mazur, R.L., Ribeiro, B., Botelho, E.C. & Costa, M.L. (2014). Evaluation of Decomposition Kinetics of Poly (Ether-Ether-Ketone) by Thermogravimetric Analysis. Mater. Res. 17(1), 227–235. DOI: 10.1590/S1516-14392013005000202.

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

Journal Information

IMPACT FACTOR 2017: 0.55
5-year IMPACT FACTOR: 0.655

CiteScore 2017: 0.65

SCImago Journal Rank (SJR) 2017: 0.202
Source Normalized Impact per Paper (SNIP) 2017: 0.395


All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 150 150 14
PDF Downloads 88 88 6