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In this research work, neural network based single loop and cascaded control strategies, based on Feed Forward 
Neural Network trained with Back Propagation (FBPNN) algorithm is carried out to control the product composition 
of reactive distillation. The FBPNN is modifi ed using the steepest descent method. This modifi cation is suggested 
for optimization of error function. The weights connecting the input and hidden layer, hidden and output layer 
is optimized using steepest descent method which causes minimization of mean square error and hence improves 
the response of the system. FBPNN, as the inferential soft sensor is used for composition estimation of reactive 
distillation using temperature as a secondary process variable. The optimized temperature profi le of the reactive 
distillation is selected as input to the neural network. Reboiler heat duty is selected as a manipulating variable in 
case of single loop control strategy while the bottom stage temperature T9 is selected as a manipulating variable 
for cascaded control strategy. It has been observed that modifi ed FBPNN gives minimum mean square error. It has 
also been observed from the results that cascaded control structure gives improved dynamic response as compared 
to the single loop control strategy. 
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INTRODUCTION

   The Combination of reaction and separation in a single 
unit as in case of reactive distillation process is advan-
tageous over conventional process for those reversible 
reactions in which equilibrium limits conversion. The 
continuous removal of product from reaction mixture also 
helps in improving selectivity. The insitu generated heat 
of reaction can also be effectively used in evaporation of 
the liquid phase. However, this combination of reaction 
and separation in a single unit operation leads to the 
highly nonlinear behavior of reactive distillation process. 
The control of such nonlinear process is a challenging 
task. Product composition measurements by online ana-
lyzers are not cost effective and also they do not give 
accurate measurements. Therefore, product composition 
can be measured based on measurement of secondary 
process variables. In case of reactive distillation process, 
temperature measurement can be used as a secondary 
process variable for measuring product composition. An 
inferential state estimator such as Neural Network can 
be effectively used to infer the product composition of 
reactive distillation process. 

The work on control of reactive distillation process is 
reported since 1996. Sorensen et al.1 has proposed opti-
mal online operation and control of the reactive batch 
distillation process. They have determined optimal values 
for refl ux ratio and reboiler heat duty based on maximum 
profi t and minimum operating time and implemented 
this optimal policy for feedback control of the batch 
reactive distillation system. Al Arfaj and Luyben2 have 
discussed six alternative control structures along with 
rigorous dynamic simulation for ideal two reactant two 
product reactive distillation column. Apart from using 
temperature measurement, they have explored a variety 
of control structure possibilities for control of different 
type of reactive distillation column. Kano et al3 propo-
sed Partial Least Square (PLS) regression to inferential 

control of distillate composition. They have selected 
tray temperature, refl ux fl ow and reboiler heat duty as 
a secondary process variables along with simulated time 
series data for development of the dynamic inferential 
model. Tight control of nonlinear reactive distillation is 
a diffi cult task. To have tight control of nonlinear batch 
reactive distillation, Doyle et al.4, has been developed 
low order model (reduced model) based on travelling 
wave phenomena. This reduced model used in nonlinear 
model predictive control for esterifi cation reaction in 
batch column. To overcome with various disturbances and 
to maintain set point tracking in reactive distillation co-
lumn, Tian et al.5 has developed Pattern-based Predictive 
Control (PPC) scheme based on Fuzzy logic rules. This 
scheme has been developed for control of the purity of 
the ETBE reactive distillation process. Lee et al.6, have 
proposed dynamics and control of three different fl ow 
sheets for esterifi cation of acetic acid and the degree of 
process nonlinearity is analyzed qualitatively based on the 
residue curve map and the boiling point ranking and it 
can be computed quantitatively based on the fraction or 
based on Allgower’s nonlinearity measure. The systematic 
design and dual temperature control and overall control 
strategy for different esterifi cation process have studied 
by Huang et al.7, Chien et al.8. Similar work was also 
carried out using simple one tray temperature control 
bythe following researchers9–11. Dynamic model deve-
lopment and model predictive control, including neural 
network control studies have been carried out by many 
researchers12–21. Adaptive Neural Network (ADALINE) 
and Dynamic ADALINE (D-ADALINE) asa soft sensor 
was developed by Rani et al.22. 

Artifi cial Neural Network (ANN) as a soft sensor 
estimator have great potential for control of reactive 
distillation processes due to their nonlinear identifi ca-
tion capabilities. In this research work, authors have 
implemented Feed Forward Back Propagation Neural 
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Network (FBPNN) which is modifi ed using the steepest 
descent method is used as soft sensor for single loop 
and cascaded control strategies for control of reactive 
distillation process. For the representative process, propyl 
propionate synthesis via reactive distillation is chosen. 

The aim of the present study is to control the product 
composition of reactive distillation using inferential soft 
sensor technique which is based on feed forward neural 
network trained using back propagation algorithm. The 
FBPNN is then modifi ed using the steepest descent me-
thod which optimizes the error function and minimizes 
mean square error. The dynamic mathematical model 
which is an essential and powerful tool for simulation 
study is considered in the research work.

The organization of this paper is as follows: Process 
description and experimental synthesis is given in sec-
tion 2. Section 3 comprises of nonlinear dynamic model 
equations. Description of FBPNN with its modifi ed 
algorithm and control strategies using single loop and 
cascaded control is presented in section 4. The results 
and discussions are presented in section 5. The conclusion 
of the work is given in section 6.

PROCESS DESCRIPTION

Propyl propionate is a widely used solvent as poly-
merization solvent, automotive refi nish, and appliance 
coatings. It is considered as a non-hazardous air pollutant 
which makes it a good alternative for aromatic hydro-
carbon solvents like toluene and xylene. Furthermore, 
it is used as an artifi cial fl avor in the food industry. It 
is synthesized by the equilibrium-limited liquid-phase 
esterifi cation reaction of 1-propanol and propionic acid. 
The standard enthalpy of reaction was experimentally 
determined to be –6.4 kJ/mol. This indicates that the 
reaction is exothermic and the chemical equilibrium 
constant is slightly dependent on temperature. The 
reaction is not self-catalyzed and needs to be catalyzed 
by a strong acidic catalyst23. 

The reaction chemistry for propyl propionate is:
C3H8O + C3H6O2 → C6H12O2 + H2O (1)

Reaction Kinetics: For a heterogeneous catalyst such 
as Amberlyst 15, the rate is affected by the amount of 
catalyst used. The rate constants for both forward rate, 
kf and reverse rate, kr is obtained from data provided 
by Buchaly et al.24. The rate can be written as follows:

 (2)

 (3)

 (4)

Experimental Synthesis of Propyl Propionate
A pilot scale reactive distillation column is used to 

collect the actual practical data for temperature and 
composition. This temperature and composition data is 
used to train the neural network. The pictorial view of 
the pilot scale reactive distillation column is shown in 
Figure 1. The experimental condition and other details 
are tabulated in Table 1. The maximum composition 
obtained experimentally for propyl propionate is 0.842.

Table 1. Input condition and results of experiment setup

MODEL EQUATIONS

A nonlinear dynamic modeling for the synthesis of pro-
pyl propionate in reactive distillation has been formulated. 
The model equations developed is employed to simulate 
the dynamics of the reactive distillation column. These 
model equations have the main features of the reactive 
distillation column and represents essential dynamics of 
the system. The packed reactive distillation with input 
and output fl ow quantities are shown in Figure 2. As 
reactive distillation exhibits non-equilibrium condition, 
following are the assumptions made:

1. Assuming three zones existing in RDC: Reaction, 
rectifying and stripping section.

2. Constant relative volatility.
3. Variable Liquid and constant vapor holdup thro-

ughout the column.

Figure 1. Pilot Scale Reactive Distillation Column
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4. Complete mixing of vapor and liquid. 
5. Chemical reaction occurs in liquid phase in reactive 

zone and in the reboiler. No reaction occurs in vapor 
phase.

Mass Balance: The component mass balance around 
the following sections is written as follows:

Refl ux drum:

 (5)

Rectifying and stripping section:

 (6)

Reactive section:

 (7)

Feed section:

 (8)

Reboiler:

 (9)

Energy Balance: Assuming that change in enthalpy 
for rectifying and stripping section is constant, while it 
varies in the reactive zone because of exothermic heat 
of reaction involved in esterifi cation reaction.

 (10)

Condenser Heat Duty: 

 (11)

Reboiler Heat Duty:

 (12)

Rate of Heat and Mass Transfer
The vapor rate increases up through the reaction 

section and the liquid rate decreases down through the 
reactive section. Hence, in terms of heat of reaction 
involved with vapor and liquid fl ow rate, the equations 
can be written as:

 (13)

 (14)

The rate of mass transfer due to diffusion can be 
written as follows:

 (15)

Temperature Measurement
The temperature measurement as a secondary variable 

and as an input for neural network estimator can be 
written for three stages selected as: the condenser and 
the refl ux drum, the reactive stage and bottom reboiler 
temperature. For condenser, the change in temperature 
with time can be written as follows:

 (16)

The reaction stage temperature can be written as:

For reboiler, the equation written is as follows:

 (18)

With the aid of MATLAB (R2013b), a program is 
developed for solving the above balance equations, rate 
equations and temperature equations using ode45 solver. 
Ode45 is an equation solver for solving stiff differential 
and algebraic equations. 

FEED FORWARD BACK PROPAGATION NEURAL 
NETWORK (FBPNN)

The FBPNN is based on supervised learning. The feed 
forward back propagation neural network is a multilay-
er, feed forward consisting of an input layer, a hidden 
layer and an output layer and possesses weighted inter-
connections. The back propagation learning algorithm 
is applied to single layer feed forward network, which 
consist of processing elements with continuous diffe-
rentiable activation function. For a given set of training 
input-output pair, this algorithm provides a procedure 
for changing weights in a BPN to classify the given input 
patterns correctly. The weight update algorithm is based 
on steepest descent method. This method is used where 
the error is propagated back to the hidden layer. The 
aim of this neural network is to train the net to achieve 
a balance between the net’s ability to respond (memori-
zation) and its ability to give a reasonable response to 
the input that is similar but not identical to the one that 
is used in training (generalization). The training of BPN 
is carried in three steps: the feed forward of the training 
input pattern, the calculation and back propagation of 

(17)

Figure 2. Packed Reactive Distillation Column with Flow Quanti-
ties
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 (24)

During the training, the weights are updated after all 
the training pattern are fed into the inputs and thus the 
cost function becomes:

 (25)

Optimization of Error Function Using Steepest Descent 
Method

Optimization of the error function is carried out to 
minimize mean square error. For this, we have optimi-
zed the weights at output and hidden layer, using the 
steepest descent method as follows:

1. For output layer: Differentiating equation (25) par-
tially with respect to the weights wjk we have:

 (26)

2. For hidden layer: Similarly, compute the partial 
derivative of Equation (25) with the weights vijwe have:

 

or  (27)

Where fi & fk denotes an activation function. The opti-
mization of the error function over the weights wjkand 
vij is done by steepest-descent method in the direction 
of steepest descent:

 (28.a)

and

 (28.b)

Where η is known as learning rate.
Since steepest descent has a zigzag problem, to over-

come this, we add a momentum term in Equation (28.a) 
and (28.b) at tth iteration:

 (29.a)

 (29.b)

Where β is known as momentum constant and 
β  [0, 1]. The graphical representation of steepest 
descent method is shown in Figure 4.

The modifi ed algorithm of FBPNN is implemented in 
MATLAB. The optimal number of sensors used in this 
case is six temperatures from the reactive distillation 
process. These optimal temperatures are used as input 
to the neural network. 

PID Controller
A proportional-integral-derivative (PID) controller is 

a feedback mechanism based control and widely used in 
industries. A PID controller calculates the error value as 

the error and updation of weights. The testing of BPN 
involves the computation of feed-forward phase only25. 
The modifi ed diagram of FBPNN is shown in Figure 3. 

Figure 3. Modifi ed Feed Forward Back Propagation Neural 
Network

FBPNN algorithm
FBPNN is used to control the product composition of 

propyl propionate reactive distillation process. The algo-
rithm of FBPNN is modifi ed with the steepest descent 
method. This modifi cation is proposed for error function 
optimization to reduce mean square error. The steepest 
descent method is used to optimize the weights between 
input layer and hidden layer and between hidden and 
output layers. The proposed neural network algorithm 
is presented as below:

Let us consider given a input pattern: 
x = (x1, x2, . . . . . xn) and targets t = (t1, t2, . . . . tm).
xi: represent ith input unit,
tj:  represent jth target unit,
vij:  weight from ith neuron at input layer and jth neuron 
at hidden layer for 1 ≤i ≤N, 1 ≤j ≤P.
voj: bias on jth hidden unit,
woj: weight from jth neuron at hidden layer and kth neuron 
at output layer for 1 ≤j ≤P; 1 ≤k ≤N.

Now calculate net input at jth hidden neuron as follows:

 (19)
and

 (20)

Where zjdenotes the output at jth hidden neuron and 
fis activation function monotonically increasing and dif-
ferentiable. Calculate the net input at kth output neuron 
is as follows:

 (21)
and

 (22)

Where ykdenotes the output at kth output neuron and 
f has its usual meaning.

The error at the kth output node is:
 (23)

where p denotes the given pattern.
Mean square error is given by:
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the difference between a measured process variable and 
a desired set point. The controller attempts to minimize 
the error by adjusting the process variable through the 
use of a manipulated variable. 

The output of the PID controller can be expressed as:

 (30)

Where, u is the control signal, e is the error, τ is in-
tegral time and kp, ki and kd proportional, integral and 
derivative gain respectively (Astrom & Hagglund)26. All 
the three control combinations of conventional PID 
controller are used to control the reactive distillation 
process. The transfer function of the PID controller 
obtained is as follows:

 (31)

This controller is tuned using Tyreus-Luyben tuning 
method and the tuning parameters are kp= 205 (gain), 
τi = 10 min and τd = 1.27 min. The PID controller 
tuning plots obtained for both single loop and cascaded 
control strategy is shown in Figures 5 (a) and (b) re-
spectively. Rise time for single loop and cascaded loop 
are 3.53 and 22.1 seconds respectively. Settling time 
for both loops after tuning are 12.9 and 96.3 seconds 

respectively. Percentage overshoot for both cases are 
observed as 7.99% and 5.26% respectively. This PID 
controller is designed to compensate error. The error 
generated during the process is sensed and compared 
with the reference value of the PID controller. Then 
the PID controller regulates the manipulating variable 
which is reboiler heat duty in this case.

Single Loop Control Strategy
The block diagram of the single loop control strategy 

is shown in Figure 6. Here, RDC(s) is the model of 
the reactive distillation column, FA and FB are the 
feed fl ow rate of the input feed A and B respectively. 
Based on four inputs, i.e. two feed fl ow rates FA and 
FB, refl ux ratio and reboiler heat duty, six temperatures 
are obtained as output from the reactive distillation 
system. The two feed streams, and refl ux ratio are the 
disturbing quantities considered. Reboiler heat duty is 
selected as manipulated variable. Product composition 
is selected as controlled variable. From the reactive di-
stillation system, temperature change selected from six 
stages are taken as input to the neural network. These 
six temperatures are top stage temperature T1, four 
temperature T3, T4, T5 and T6 from reaction section 
and bottom stage temperature T9. These temperatures 
are used as secondary process variables for composition 

Figure 4. Graphical representation of steepest descent method 
(zigzag problem)

Figure 5. PID Controller Tuning Response Curve 

Figure 6. Single Loop Control of Reactive Distillation using modifi ed FBPNN
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Variation in composition for both single loop and ca-
scaded control strategy is shown in Figure 8. As shown 
in the fi gure, the composition variation against time is 
constant in case of cascaded control strategy. In case 
of single loop strategy, the variation in composition is 
increasing continuously and remains constant after 3000 
seconds. This response diagram clearly indicates the 
successful implementation of modifi ed FBPNN as soft 
sensors estimator for control of such nonlinear reactive 
distillation column. The range of composition was set 
between 0.85 to 0.96 and both control strategies were 
tested by conducting various runs performed in MATLAB. 

measurement. Modifi ed feed forward back propagation 
neural network with optimization of error function using 
thesteepest descend method uses these temperature me-
asurements from reactive distillation column as input to 
the neural network to estimate the product composition 
as output from the neural network. It is seen from the 
block diagram that the actual product composition is 
compared with the reference composition to generate 
the error. This error is given as the input to a PID 
controller which is designed to compensate for the error 
and give the desired reboiler heat duty to regulate the 
product composition. 

Cascade Control Strategy
The block diagram of the proposed cascade control 

strategy is shown in Figure 7. As compared to single 
loop control strategy, this control strategy involves two 
cascaded control loops including composition and tem-
perature control. In this case also, four inputs are given 
to get six temperatures as output from the system. These 
four inputs are refl ux ratio, feed fl ow rate FA, and FB 
and reboiler heat duty. Bottom stage temperature T9 
and reboiler heat duty are selected as the manipulated 
variables to operate both inner and outer loops. Bottom 
most temperature T9 was selected as manipulated varia-
ble because this T9 temperature instantly changes after 
single loop completes and reboiler heat duty regulated. 
This change in T9 temperature then helps maintaining 
product composition. Again, product composition is 
selected as the controlled variable. 

In this cascaded control strategy, the error signal betwe-
en reference composition ‘Xdref’ and actual composition 
‘Xd’ is used to calculate the reference temperature for the 
bottom plate ‘T9ref’. This reference temperature of the T9 
plate is then compared with the actual sensed temperature 
of 9th plate. In this strategy, T9 temperature will track 
the reference temperature and the product composition 
will track the reference composition. However, the main 
condition is that inner loop must be faster as compared 
to the outer loop. Double loop cascaded control strategy 
gives improved dynamic response as compared to single 
loop control strategy. Two controllers PID and PI are 
used to compensate both inner and outer loops. 

Figure 8. Composition variation against time

Figure 7. Cascade Control of Reactive Distillation using modifi ed FBPNN

Disturbance Rejection and Set Point Tracking
The performance of both single loop and cascaded 

loop control strategies is tested by applying various di-
sturbances in the system. The ±10% variation in refl ux 
ratio is introduced as input to the system. The estima-
tions obtained from single loop and cascaded loop soft 
sensor for positive and negative disturbances are shown 
in Figures 9 and 10 respectively. It is observed that in 
case of single loop control strategy, the variation in 
composition is large i.e. the set point changed from 0.96 
to 0.9605 and after 600 seconds it comes to steady state 
(set point). In case of cascaded control, the variation is 
very small and set point changed from 0.96 to 0.9605 
and only after few seconds it reaches steady s   tate. 
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Similarly, when a step changes of –10% in refl ux ratio is 
given, in case of single loop strategy, again the variation 
is large, the set point changed from 0.96 to 0.9595 and 
then after 500 seconds it came back to steady state. In 
case of cascaded control, the set point changed from 
0.96 to 0.9596 and just after a few seconds it reaches 
steady   state.

In the same manner, variation of ±20% in the feed 
fl ow rate of component A (FA) is observed. The variation 
is shown in Figures 11 and 12 respectively. As shown in 
Figure 11, when a step change of +20% in FA is given, 
the set point is changed from 0.96 to 0.983, and after 

1600 seconds it reached to steady state while in case of 
cascaded strategy, the set point changed from 0.96 to 
0.964, and, then, after 800 seconds only it reached to 
steady state without much fl uctuations. Similarly, when 
the set point change of –20% is given in the input feed 
fl ow rate FA, the set point changed from 0.96 to 0.94 
and after 1600 seconds it reached a steady state, while 
in case of cascaded control, the set point changed from 
0.96 to 0.964 and just after a few seconds it reached to 
steady s  tate. 

A similar response is observed when positive variation 
in set point of feed fl ow rate FB is given from 0.035 
to 0.042 (+20%) and negative variation in set point of 
FB from 0.035 to 0.028 (–20%) is given and response 
is shown in Figures 13 and 14 respectively. Again, it 
is clear from the fi gure that the dynamic response of 
cascaded control strategy is excellent as compared to 
the single loop.

Figure 10. Composition variation after –10% variation in refl ux ratio

Figure 9. Composition variation after +10% variation in refl ux 
ratio

Figure 11. Composition variation after +20% (0.035 to 0.042 l/min) 
variation in FA

Figure 13. Composition variation after +20% (0.035 to 0.042 l/min) 
variation in FB

Figure 12. Composition variation after –20% (0.035 to 0.028 l/min) 
variation in FA

This is also validated when mixed variation in both 
feed fl ow rate FA and FB and refl ux ratio is given and 
response for cascaded control obtained is perfect as 
compared to the single loop. This response curve is 
shown in Figure 15.
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RESULTS AND DISCUSSION

Simulation Results
A dynamic simulation and control strategy implemen-

tation for propyl propionate reactive distillation process 
is developed in MATLAB (2013b). The simulation runs 
is carried out in the composition range from 0.85 to 0.96. 
The composition profi le of propyl propionate reactive 
distillation is shown in Figure 16. It is observed from 
the graph that product composition obtained is 0.858. 
As discussed earlier, the product composition obtained 
experimentally was 0.842. It is showing a good agreement 
between experimental and simulation results. 

Training, Testing and Validation of FBPNN
The training, testing and validation of FBPNN is 

performed before and after modifi cation of the neural 
network algorithm. FBPNN without modifi cation of al-
gorithm is fi rst trained using experimental data collected 
at specifi ed operating condition. Figure 17, old one, is 
removed from the manuscript.

Training, testing and validation was simultaneously 
performed for FBPNN algorithm without modifi cation 
in MATLAB using the same experimental data. For 
case 1, the number of hidden layer is selected as 10 and 
training, testing and validation is carried out for one 
input and one output layer. Figure 17 shows, training, 
testing and validation for case 1, without modifi cation of 

Figure 18. Training, Testing and validation of modifi ed FBPNN

Figure 17. Training, Testing and validation of FBPNN without 
modifi cation

Figure 16. Composition profi le of Propyl Propionate

Figure 15. Composition variation against mixed variation in fl ow 
(FA+FB)

Figure 14. Composition variation after –20% (0.035 to 0.028 l/min) 
variation in FB

the algorithm. It is clear from the fi gure that the error 
generated for respective output and the target is large. 

The product composition as output obtained is 0.86. 
Similarly, the training, testing and validation is also 
carried out for the modifi ed FBPNN algorithm. Figure 
18 shows the training testing and validation for case 
2, in which the number neurons in hidden layer is set 
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as 12. It is clear from the fi gure that the error is mi-
nimum for algorithm which is modifi ed and optimized 
for error function.

The performance with mean square error is shown 
in Figure 19. It is shown in the diagram that training, 
testing and validation were best performed and the value 
under circle found as 0.0060659 at epoch 10. 

Training, testing and validation of FBPNN algorithm 
with and without modifi cation is carried out to show 
that the modifi cation proposed using the steepest de-
scent method for FBPNN algorithm is suitable for error 
minimization. The mean square error is minimized after 
modifi cation and helps in improving the performance 
of the algorithm. This also indicates that the proposed 
modifi cation in the neural network algorithm is suitable 
for nonlinear process control application.

Table 2. IAE of PID controller subjected to various set point changes

Figure 19. Performance w.r.t to mean square error

Integral Absolute Error (IAE)
Output from a controller is generally located in areas 

above and below the set point. Integral of absolute error 
penalize all errors without consideration of direction. 
The modulus neglects the direction and integrates the 
error over the process time. IAE is generally used for 
small deviation process error. In general, the integral 
absolute error can be given as: 

 (32)

Where, y is the actual output and ysp is the set point. 
The IAE values are given in Table 2.

CONCLUSION

In this research work, modifi ed FBPNN using the 
steepest descent method based single loop and casca-
ded control strategies is proposed for control of propyl 
propionate reactive distillation column. The proposed 
modifi cation is used to minimize the mean square error 
by optimization of weights between input-hidden and 
hidden-output layer. The proposed single loop control 
scheme consists of FBPNN estimator and PID controller 
while the cascaded control scheme consists of FBPNN 
estimator and two PID controllers for inner and outer 
loops. The propyl propionate reactive distillation column 
is modeled and simulated in MATLAB. Experimental 
data have been collected for temperature and composi-
tion. These temperature measurements have been used as 
a secondary process variable for composition estimation. 
The limit of the composition estimation was set between 
0.86 to 0.96 and several simulation experiments conduc-
ted to evaluate the performance of the proposed control 
scheme. A comparison was made between single loop 
and cascaded control scheme. It has been observed that 
the proposed modifi cation of the algorithm is successful 
in minimization of mean square error and, hence, the 
performance of the neural network was improved. It has 
also been observed that the cascaded control scheme 
gives an improved dynamic response in comparison to 
single loop. The performance is checked out for various 
disturbances in input variables and set point tracking. 
The Mean Square Error (MSE) and Integral Absolute 
Error (IAE) were also calculated.

NOMENCLATURE

B – Bottom Flow rate [moles/min]
CH2O – Concentration of water [moles]
Cp – Specifi c heat of product liquid [J/mole °C]
CPA – Concentration of propionic acid [moles]
CPOH – Concentration of propanol [moles]
CPP – Concentration of propyl propionate [moles]
D – Distillate fl ow rate [moles/min]
Ek – Total catalyst volume available in the contacting

  cell [cm3]
Fn – Input feed fl ow rate on nth stage [moles/min]
hn–1 – Enthalpy of liquid at n–1th stage [J]
Hn+1 – Enthalpy of vapor at n+1th stage [J]
hn – Enthalpy of liquid at nth stage [J]
Hn – Enthalpy of vapor at nth stage [J]
hf – Enthalpy of Feed [J]
hR – Enthalpy of liquid accumulated in reactive zone [J]
hD – Enthalpy of distillate [J] 
hB – Enthalpy of bottom product [J]
HB – Enthalpy of vapor leaving the reboiler [J]
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∆Hv – heat due to vaporization [J] 
Kf – forward rate constant [sec–1]
Kr – Backward rate constant [sec–1]
Keq – equilibrium rate constant for the reaction 

  [ratio of kf/kr]
Ln+1 – Liquid fl ow rate of n+1th stage [moles/min]
Ln – Liquid fl ow rate on nth stage [moles/min]
MB – Reboiler holdup [moles]
MD – Holdup of distillate [moles]
Mf – Holdup of feed [moles]
Mn – Liquid holdup on nth stage [moles]
QC – Condenser Heat duty [kW]
QB – Reboiler Heat duty [kW]
RR – Refl ux ratio [constant]
R – Universal gas constant [(atm . cm3)/(gmole K)]
Rrate – Refl ux rate [mole/min]
Rn,i – Net reaction rate of component i on nth stage

   [(mole)(litre–1)(sec–1)]
Tn – Temperature for nth stage [°C]
Tn+1 – Temperature for n+1th stage [°C]
Tn–1 – Temperature for n–1th stage [°C]
Tfeed – Temperature of feed stream [°C]
Tf – Temperature of feed plate [°C]
TR – Average Temperature of reaction zone [°C]
T – Reaction Temperature [°C]
Vn – Vapor fl ow rate on nth stage [moles/min]
Vn–1 – Vapor fl ow rate on n–1th stage [moles/min]
VB – Flow rate of vapor leaving the reboiler 
   [moles/min]
VR – Volume of Reactive Zone [m3]
vi,m  – Stoichmetric coeffi cient of component i [constant]
VM – Volume through which mass transfer occur [m3]
W – Mass of dry catalyst used [g]
xD,i – Composition of distillate 
xn,i – Liquid composition of component i on nth tray
xB,i – Liquid composition of bottom product 
xn+1,i – Liquid composition of component i on n+1th tray
yn–1,i – Vapor composition of component i on n-1th tray
yn,i – Vapor composition of component i on nth tray
yB,i – Composition of vapor leaving the reboiler 
zn,i – Feed composition of component i on nth tray
λ  – Latent heat of reaction [J/mole]
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